{"title":"最大化区域敏感性分析指数,找到敏感的模型行为","authors":"Sebastien Roux, Patrice Loisel, Samuel Buis","doi":"10.1615/int.j.uncertaintyquantification.2024051424","DOIUrl":null,"url":null,"abstract":"We address the question of sensitivity analysis for model outputs of any dimension using Regional Sensitivity Analysis (RSA). Classical RSA computes sensitivity indices related to the impact of model inputs variations on the occurrence of a target region of the model output space. In this work, we put this perspective one step further by proposing to find, for a given model input, the region whose occurrence is best explained by the variations of this input. When it exists, this region can be seen as a model behavior which is particularly sensitive to the variations of the model input under study. We name this method mRSA (for maximized RSA).\nmRSA is formalized as an optimization problem using region-based sensitivity indices. Two formulations are studied, one theoretically and one numerically using a dedicated algorithm. Using a 2D test model and an environmental model producing time series, we show that mRSA, as a new model exploration tool, can provide interpretable insights on the sensitivity of model outputs of various dimensions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximizing Regional Sensitivity Analysis indices to find sensitive model behaviors\",\"authors\":\"Sebastien Roux, Patrice Loisel, Samuel Buis\",\"doi\":\"10.1615/int.j.uncertaintyquantification.2024051424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the question of sensitivity analysis for model outputs of any dimension using Regional Sensitivity Analysis (RSA). Classical RSA computes sensitivity indices related to the impact of model inputs variations on the occurrence of a target region of the model output space. In this work, we put this perspective one step further by proposing to find, for a given model input, the region whose occurrence is best explained by the variations of this input. When it exists, this region can be seen as a model behavior which is particularly sensitive to the variations of the model input under study. We name this method mRSA (for maximized RSA).\\nmRSA is formalized as an optimization problem using region-based sensitivity indices. Two formulations are studied, one theoretically and one numerically using a dedicated algorithm. Using a 2D test model and an environmental model producing time series, we show that mRSA, as a new model exploration tool, can provide interpretable insights on the sensitivity of model outputs of various dimensions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/int.j.uncertaintyquantification.2024051424\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2024051424","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Maximizing Regional Sensitivity Analysis indices to find sensitive model behaviors
We address the question of sensitivity analysis for model outputs of any dimension using Regional Sensitivity Analysis (RSA). Classical RSA computes sensitivity indices related to the impact of model inputs variations on the occurrence of a target region of the model output space. In this work, we put this perspective one step further by proposing to find, for a given model input, the region whose occurrence is best explained by the variations of this input. When it exists, this region can be seen as a model behavior which is particularly sensitive to the variations of the model input under study. We name this method mRSA (for maximized RSA).
mRSA is formalized as an optimization problem using region-based sensitivity indices. Two formulations are studied, one theoretically and one numerically using a dedicated algorithm. Using a 2D test model and an environmental model producing time series, we show that mRSA, as a new model exploration tool, can provide interpretable insights on the sensitivity of model outputs of various dimensions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.