高阶阿尔丁猜想

IF 0.6 4区 数学 Q3 MATHEMATICS
Olli Järviniemi
{"title":"高阶阿尔丁猜想","authors":"Olli Järviniemi","doi":"10.1093/qmath/haae012","DOIUrl":null,"url":null,"abstract":"For an algebraic number α we consider the orders of the reductions of α in finite fields. In the case where α is an integer, it is known by the work on Artin’s primitive root conjecture that the order is ‘almost always almost maximal’ assuming the Generalized Riemann Hypothesis (GRH), but unconditional results remain modest. We consider higher-degree variants under GRH. First, we modify an argument of Roskam to settle the case where α and the reduction have degree two. Second, we give a positive lower density result when α is of degree three and the reduction is of degree two. Third, we give higher-rank results in situations where the reductions are of degree two, three, four or six. As an application we give an almost equidistribution result for linear recurrences modulo primes. Finally, we present a general result conditional to GRH and a hypothesis on smooth values of polynomials at prime arguments.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"48 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher-degree Artin conjecture\",\"authors\":\"Olli Järviniemi\",\"doi\":\"10.1093/qmath/haae012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an algebraic number α we consider the orders of the reductions of α in finite fields. In the case where α is an integer, it is known by the work on Artin’s primitive root conjecture that the order is ‘almost always almost maximal’ assuming the Generalized Riemann Hypothesis (GRH), but unconditional results remain modest. We consider higher-degree variants under GRH. First, we modify an argument of Roskam to settle the case where α and the reduction have degree two. Second, we give a positive lower density result when α is of degree three and the reduction is of degree two. Third, we give higher-rank results in situations where the reductions are of degree two, three, four or six. As an application we give an almost equidistribution result for linear recurrences modulo primes. Finally, we present a general result conditional to GRH and a hypothesis on smooth values of polynomials at prime arguments.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/qmath/haae012\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/qmath/haae012","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于代数数 α,我们考虑的是有限域中α 的还原阶。在 α 是整数的情况下,根据阿尔丁的原始根猜想,假定广义黎曼假说(GRH),阶 "几乎总是几乎最大",但无条件的结果仍然不大。我们考虑 GRH 条件下的高阶变式。首先,我们修改了罗斯卡姆的论证,以解决 α 和还原度为 2 的情况。其次,当 α 的度数为三而还原度数为二时,我们给出了一个正的低密度结果。第三,我们给出了还原度为 2、3、4 或 6 时的高密度结果。作为应用,我们给出了素数模线性递推的几乎等分布结果。最后,我们给出了与 GRH 有关的一般结果,以及关于素数参数多项式平滑值的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher-degree Artin conjecture
For an algebraic number α we consider the orders of the reductions of α in finite fields. In the case where α is an integer, it is known by the work on Artin’s primitive root conjecture that the order is ‘almost always almost maximal’ assuming the Generalized Riemann Hypothesis (GRH), but unconditional results remain modest. We consider higher-degree variants under GRH. First, we modify an argument of Roskam to settle the case where α and the reduction have degree two. Second, we give a positive lower density result when α is of degree three and the reduction is of degree two. Third, we give higher-rank results in situations where the reductions are of degree two, three, four or six. As an application we give an almost equidistribution result for linear recurrences modulo primes. Finally, we present a general result conditional to GRH and a hypothesis on smooth values of polynomials at prime arguments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信