scCDCG:通过深度切分信息图嵌入为单细胞 RNA-seq 进行高效深度结构聚类

Ping Xu, Zhiyuan Ning, Meng Xiao, Guihai Feng, Xin Li, Yuanchun Zhou, Pengfei Wang
{"title":"scCDCG:通过深度切分信息图嵌入为单细胞 RNA-seq 进行高效深度结构聚类","authors":"Ping Xu, Zhiyuan Ning, Meng Xiao, Guihai Feng, Xin Li, Yuanchun Zhou, Pengfei Wang","doi":"arxiv-2404.06167","DOIUrl":null,"url":null,"abstract":"Single-cell RNA sequencing (scRNA-seq) is essential for unraveling cellular\nheterogeneity and diversity, offering invaluable insights for bioinformatics\nadvancements. Despite its potential, traditional clustering methods in\nscRNA-seq data analysis often neglect the structural information embedded in\ngene expression profiles, crucial for understanding cellular correlations and\ndependencies. Existing strategies, including graph neural networks, face\nchallenges in handling the inefficiency due to scRNA-seq data's intrinsic\nhigh-dimension and high-sparsity. Addressing these limitations, we introduce\nscCDCG (single-cell RNA-seq Clustering via Deep Cut-informed Graph), a novel\nframework designed for efficient and accurate clustering of scRNA-seq data that\nsimultaneously utilizes intercellular high-order structural information. scCDCG\ncomprises three main components: (i) A graph embedding module utilizing deep\ncut-informed techniques, which effectively captures intercellular high-order\nstructural information, overcoming the over-smoothing and inefficiency issues\nprevalent in prior graph neural network methods. (ii) A self-supervised\nlearning module guided by optimal transport, tailored to accommodate the unique\ncomplexities of scRNA-seq data, specifically its high-dimension and\nhigh-sparsity. (iii) An autoencoder-based feature learning module that\nsimplifies model complexity through effective dimension reduction and feature\nextraction. Our extensive experiments on 6 datasets demonstrate scCDCG's\nsuperior performance and efficiency compared to 7 established models,\nunderscoring scCDCG's potential as a transformative tool in scRNA-seq data\nanalysis. Our code is available at: https://github.com/XPgogogo/scCDCG.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"scCDCG: Efficient Deep Structural Clustering for single-cell RNA-seq via Deep Cut-informed Graph Embedding\",\"authors\":\"Ping Xu, Zhiyuan Ning, Meng Xiao, Guihai Feng, Xin Li, Yuanchun Zhou, Pengfei Wang\",\"doi\":\"arxiv-2404.06167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-cell RNA sequencing (scRNA-seq) is essential for unraveling cellular\\nheterogeneity and diversity, offering invaluable insights for bioinformatics\\nadvancements. Despite its potential, traditional clustering methods in\\nscRNA-seq data analysis often neglect the structural information embedded in\\ngene expression profiles, crucial for understanding cellular correlations and\\ndependencies. Existing strategies, including graph neural networks, face\\nchallenges in handling the inefficiency due to scRNA-seq data's intrinsic\\nhigh-dimension and high-sparsity. Addressing these limitations, we introduce\\nscCDCG (single-cell RNA-seq Clustering via Deep Cut-informed Graph), a novel\\nframework designed for efficient and accurate clustering of scRNA-seq data that\\nsimultaneously utilizes intercellular high-order structural information. scCDCG\\ncomprises three main components: (i) A graph embedding module utilizing deep\\ncut-informed techniques, which effectively captures intercellular high-order\\nstructural information, overcoming the over-smoothing and inefficiency issues\\nprevalent in prior graph neural network methods. (ii) A self-supervised\\nlearning module guided by optimal transport, tailored to accommodate the unique\\ncomplexities of scRNA-seq data, specifically its high-dimension and\\nhigh-sparsity. (iii) An autoencoder-based feature learning module that\\nsimplifies model complexity through effective dimension reduction and feature\\nextraction. Our extensive experiments on 6 datasets demonstrate scCDCG's\\nsuperior performance and efficiency compared to 7 established models,\\nunderscoring scCDCG's potential as a transformative tool in scRNA-seq data\\nanalysis. Our code is available at: https://github.com/XPgogogo/scCDCG.\",\"PeriodicalId\":501070,\"journal\":{\"name\":\"arXiv - QuanBio - Genomics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.06167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.06167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

单细胞 RNA 测序(scRNA-seq)对于揭示细胞的异质性和多样性至关重要,为生物信息学的发展提供了宝贵的见解。尽管潜力巨大,但传统的 scRNA-seq 数据分析聚类方法往往忽视了基因表达谱中蕴含的结构信息,而这些信息对于理解细胞相关性和依赖性至关重要。包括图神经网络在内的现有策略在处理 scRNA-seq 数据的内在高维度和高稀疏性所导致的低效率方面面临挑战。为了解决这些局限性,我们引入了单细胞 RNA-seq 聚类(single-cell RNA-seq Clustering via Deep Cut-informed Graph),这是一个新颖的框架,旨在对 scRNA-seq 数据进行高效准确的聚类,同时利用细胞间的高阶结构信息:(i) 利用深度切分技术的图嵌入模块,它能有效捕捉细胞间高阶结构信息,克服了之前图神经网络方法中普遍存在的过度平滑和低效问题。(ii) 以最优传输为指导的自监督学习模块,专为适应 scRNA-seq 数据的独特复杂性而定制,特别是其高维度和高稀疏性。(iii) 基于自动编码器的特征学习模块,通过有效的降维和特征提取简化了模型的复杂性。我们在 6 个数据集上进行了大量实验,证明 scCDCG 的性能和效率优于 7 个已建立的模型,突出了 scCDCG 作为 scRNA-seq 数据分析变革性工具的潜力。我们的代码可在以下网址获取:https://github.com/XPgogogo/scCDCG。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
scCDCG: Efficient Deep Structural Clustering for single-cell RNA-seq via Deep Cut-informed Graph Embedding
Single-cell RNA sequencing (scRNA-seq) is essential for unraveling cellular heterogeneity and diversity, offering invaluable insights for bioinformatics advancements. Despite its potential, traditional clustering methods in scRNA-seq data analysis often neglect the structural information embedded in gene expression profiles, crucial for understanding cellular correlations and dependencies. Existing strategies, including graph neural networks, face challenges in handling the inefficiency due to scRNA-seq data's intrinsic high-dimension and high-sparsity. Addressing these limitations, we introduce scCDCG (single-cell RNA-seq Clustering via Deep Cut-informed Graph), a novel framework designed for efficient and accurate clustering of scRNA-seq data that simultaneously utilizes intercellular high-order structural information. scCDCG comprises three main components: (i) A graph embedding module utilizing deep cut-informed techniques, which effectively captures intercellular high-order structural information, overcoming the over-smoothing and inefficiency issues prevalent in prior graph neural network methods. (ii) A self-supervised learning module guided by optimal transport, tailored to accommodate the unique complexities of scRNA-seq data, specifically its high-dimension and high-sparsity. (iii) An autoencoder-based feature learning module that simplifies model complexity through effective dimension reduction and feature extraction. Our extensive experiments on 6 datasets demonstrate scCDCG's superior performance and efficiency compared to 7 established models, underscoring scCDCG's potential as a transformative tool in scRNA-seq data analysis. Our code is available at: https://github.com/XPgogogo/scCDCG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信