论包含时间延迟的非线性时间分数欧拉-伯努利梁问题的能量衰减:理论处理和数值求解技术

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Toufik Bentrcia, Abdelaziz Mennouni
{"title":"论包含时间延迟的非线性时间分数欧拉-伯努利梁问题的能量衰减:理论处理和数值求解技术","authors":"Toufik Bentrcia, Abdelaziz Mennouni","doi":"10.1007/s10665-024-10353-3","DOIUrl":null,"url":null,"abstract":"<p>In this work, an extended Euler–Bernoulli beam equation is addressed, where numerous phenomena are covered including damping, time-delay, and nonlinear source effects. A generalized fractional derivative is used to model dissipation of order less than one, which offers more flexibility for modeling tasks. Through a diffusive representation, the problem well-posedness is tackled and the exponential decay of the energy associated to global solutions is proved under some conditions. In order to validate our theoretical findings, we implement a finite difference scheme and we elucidate that the boundedness of the local propagation matrix may be inaccurate for the convergence evaluation in some situations. Furthermore, we show that deep neural networks are efficient alternatives to deal with computational and stability burdens resulting from the mesh refinement in standard numerical schemes.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the energy decay of a nonlinear time-fractional Euler–Bernoulli beam problem including time-delay: theoretical treatment and numerical solution techniques\",\"authors\":\"Toufik Bentrcia, Abdelaziz Mennouni\",\"doi\":\"10.1007/s10665-024-10353-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, an extended Euler–Bernoulli beam equation is addressed, where numerous phenomena are covered including damping, time-delay, and nonlinear source effects. A generalized fractional derivative is used to model dissipation of order less than one, which offers more flexibility for modeling tasks. Through a diffusive representation, the problem well-posedness is tackled and the exponential decay of the energy associated to global solutions is proved under some conditions. In order to validate our theoretical findings, we implement a finite difference scheme and we elucidate that the boundedness of the local propagation matrix may be inaccurate for the convergence evaluation in some situations. Furthermore, we show that deep neural networks are efficient alternatives to deal with computational and stability burdens resulting from the mesh refinement in standard numerical schemes.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-024-10353-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10353-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,对扩展的欧拉-伯努利梁方程进行了研究,其中包括阻尼、时间延迟和非线性源效应等众多现象。使用广义分数导数对小于一阶的耗散进行建模,为建模任务提供了更大的灵活性。通过扩散表示法,我们解决了问题的好求解性,并在某些条件下证明了与全局解相关的能量指数衰减。为了验证我们的理论发现,我们实施了有限差分方案,并阐明了局部传播矩阵的有界性在某些情况下可能对收敛性评估不准确。此外,我们还证明了深度神经网络是处理标准数值方案中网格细化带来的计算和稳定性负担的有效替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the energy decay of a nonlinear time-fractional Euler–Bernoulli beam problem including time-delay: theoretical treatment and numerical solution techniques

On the energy decay of a nonlinear time-fractional Euler–Bernoulli beam problem including time-delay: theoretical treatment and numerical solution techniques

In this work, an extended Euler–Bernoulli beam equation is addressed, where numerous phenomena are covered including damping, time-delay, and nonlinear source effects. A generalized fractional derivative is used to model dissipation of order less than one, which offers more flexibility for modeling tasks. Through a diffusive representation, the problem well-posedness is tackled and the exponential decay of the energy associated to global solutions is proved under some conditions. In order to validate our theoretical findings, we implement a finite difference scheme and we elucidate that the boundedness of the local propagation matrix may be inaccurate for the convergence evaluation in some situations. Furthermore, we show that deep neural networks are efficient alternatives to deal with computational and stability burdens resulting from the mesh refinement in standard numerical schemes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信