Doron Haviv, Russell Zhang Kunes, Thomas Dougherty, Cassandra Burdziak, Tal Nawy, Anna Gilbert, Dana Pe'er
{"title":"瓦瑟斯坦虫洞利用变压器实现可扩展的最佳传输距离","authors":"Doron Haviv, Russell Zhang Kunes, Thomas Dougherty, Cassandra Burdziak, Tal Nawy, Anna Gilbert, Dana Pe'er","doi":"arxiv-2404.09411","DOIUrl":null,"url":null,"abstract":"Optimal transport (OT) and the related Wasserstein metric (W) are powerful\nand ubiquitous tools for comparing distributions. However, computing pairwise\nWasserstein distances rapidly becomes intractable as cohort size grows. An\nattractive alternative would be to find an embedding space in which pairwise\nEuclidean distances map to OT distances, akin to standard multidimensional\nscaling (MDS). We present Wasserstein Wormhole, a transformer-based autoencoder\nthat embeds empirical distributions into a latent space wherein Euclidean\ndistances approximate OT distances. Extending MDS theory, we show that our\nobjective function implies a bound on the error incurred when embedding\nnon-Euclidean distances. Empirically, distances between Wormhole embeddings\nclosely match Wasserstein distances, enabling linear time computation of OT\ndistances. Along with an encoder that maps distributions to embeddings,\nWasserstein Wormhole includes a decoder that maps embeddings back to\ndistributions, allowing for operations in the embedding space to generalize to\nOT spaces, such as Wasserstein barycenter estimation and OT interpolation. By\nlending scalability and interpretability to OT approaches, Wasserstein Wormhole\nunlocks new avenues for data analysis in the fields of computational geometry\nand single-cell biology.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wasserstein Wormhole: Scalable Optimal Transport Distance with Transformers\",\"authors\":\"Doron Haviv, Russell Zhang Kunes, Thomas Dougherty, Cassandra Burdziak, Tal Nawy, Anna Gilbert, Dana Pe'er\",\"doi\":\"arxiv-2404.09411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal transport (OT) and the related Wasserstein metric (W) are powerful\\nand ubiquitous tools for comparing distributions. However, computing pairwise\\nWasserstein distances rapidly becomes intractable as cohort size grows. An\\nattractive alternative would be to find an embedding space in which pairwise\\nEuclidean distances map to OT distances, akin to standard multidimensional\\nscaling (MDS). We present Wasserstein Wormhole, a transformer-based autoencoder\\nthat embeds empirical distributions into a latent space wherein Euclidean\\ndistances approximate OT distances. Extending MDS theory, we show that our\\nobjective function implies a bound on the error incurred when embedding\\nnon-Euclidean distances. Empirically, distances between Wormhole embeddings\\nclosely match Wasserstein distances, enabling linear time computation of OT\\ndistances. Along with an encoder that maps distributions to embeddings,\\nWasserstein Wormhole includes a decoder that maps embeddings back to\\ndistributions, allowing for operations in the embedding space to generalize to\\nOT spaces, such as Wasserstein barycenter estimation and OT interpolation. By\\nlending scalability and interpretability to OT approaches, Wasserstein Wormhole\\nunlocks new avenues for data analysis in the fields of computational geometry\\nand single-cell biology.\",\"PeriodicalId\":501070,\"journal\":{\"name\":\"arXiv - QuanBio - Genomics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.09411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.09411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
最优传输(OT)和相关的瓦瑟斯坦度量(W)是比较分布的强大而普遍的工具。然而,随着队列规模的扩大,计算成对的 Wasserstein 距离很快就变得难以处理。一个有吸引力的替代方法是找到一个嵌入空间,在这个空间中,成对欧氏距离映射到 OT 距离,类似于标准多维尺度(MDS)。我们提出的 Wasserstein Wormhole 是一种基于变换器的自动编码器,它能将经验分布嵌入到欧氏距离近似于加时赛距离的潜在空间中。通过扩展 MDS 理论,我们证明了目标函数意味着嵌入非欧几里得距离时产生的误差约束。从经验上看,虫洞嵌入之间的距离与瓦瑟斯坦距离非常接近,因此可以在线性时间内计算 OT 距离。除了将分布映射到嵌入的编码器之外,Wasserstein Wormhole 还包括一个将嵌入映射回分布的解码器,使得嵌入空间中的操作可以推广到 OT 空间,例如 Wasserstein barycenter 估计和 OT 插值。Wasserstein Wormhole 将可扩展性和可解释性赋予 OT 方法,为计算几何和单细胞生物学领域的数据分析开辟了新途径。
Wasserstein Wormhole: Scalable Optimal Transport Distance with Transformers
Optimal transport (OT) and the related Wasserstein metric (W) are powerful
and ubiquitous tools for comparing distributions. However, computing pairwise
Wasserstein distances rapidly becomes intractable as cohort size grows. An
attractive alternative would be to find an embedding space in which pairwise
Euclidean distances map to OT distances, akin to standard multidimensional
scaling (MDS). We present Wasserstein Wormhole, a transformer-based autoencoder
that embeds empirical distributions into a latent space wherein Euclidean
distances approximate OT distances. Extending MDS theory, we show that our
objective function implies a bound on the error incurred when embedding
non-Euclidean distances. Empirically, distances between Wormhole embeddings
closely match Wasserstein distances, enabling linear time computation of OT
distances. Along with an encoder that maps distributions to embeddings,
Wasserstein Wormhole includes a decoder that maps embeddings back to
distributions, allowing for operations in the embedding space to generalize to
OT spaces, such as Wasserstein barycenter estimation and OT interpolation. By
lending scalability and interpretability to OT approaches, Wasserstein Wormhole
unlocks new avenues for data analysis in the fields of computational geometry
and single-cell biology.