{"title":"FastTuning:利用搜索空间的分割和并行性实现快速高效的超参数调整","authors":"Xiaqing Li;Qi Guo;Guangyan Zhang;Siwei Ye;Guanhua He;Yiheng Yao;Rui Zhang;Yifan Hao;Zidong Du;Weimin Zheng","doi":"10.1109/TPDS.2024.3386939","DOIUrl":null,"url":null,"abstract":"Hyper-parameter tuning (HPT) for deep learning (DL) models is prohibitively expensive. Sequential model-based optimization (SMBO) emerges as the state-of-the-art (SOTA) approach to automatically optimize HPT performance due to its heuristic advantages. Unfortunately, focusing on algorithm optimization rather than a large-scale parallel HPT system, existing SMBO-based approaches still cannot effectively remove their strong sequential nature, posing two performance problems: (1) \n<i>extremely low tuning speed</i>\n and (2) \n<i>sub-optimal model quality</i>\n. In this paper, we propose FastTuning, a fast, scalable, and generic system aiming at parallelly accelerating SMBO-based HPT for large DL/ML models. The key is to partition the highly complex search space into multiple smaller sub-spaces, each of which is assigned to and optimized by a different tuning worker in parallel. However, determining the right level of resource allocation to strike a balance between quality and cost remains a challenge. To address this, we further propose NIMBLE, a dynamic scheduling strategy that is specially designed for FastTuning, including (1) Dynamic Elimination Algorithm, (2) Sub-space Re-division, and (3) Posterior Information Sharing. Finally, we incorporate 6 SOTAs (i.e., 3 tuning algorithms and 3 parallel tuning tools) into FastTuning. Experimental results, on ResNet18, VGG19, ResNet50, and ResNet152, show that FastTuning can consistently offer much faster tuning speed (up to \n<inline-formula><tex-math>$80\\times$</tex-math></inline-formula>\n) with better accuracy (up to 4.7% improvement), thereby enabling the application of automatic HPT to real-life DL models.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 7","pages":"1174-1188"},"PeriodicalIF":5.6000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FastTuning: Enabling Fast and Efficient Hyper-Parameter Tuning With Partitioning and Parallelism of Search Space\",\"authors\":\"Xiaqing Li;Qi Guo;Guangyan Zhang;Siwei Ye;Guanhua He;Yiheng Yao;Rui Zhang;Yifan Hao;Zidong Du;Weimin Zheng\",\"doi\":\"10.1109/TPDS.2024.3386939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyper-parameter tuning (HPT) for deep learning (DL) models is prohibitively expensive. Sequential model-based optimization (SMBO) emerges as the state-of-the-art (SOTA) approach to automatically optimize HPT performance due to its heuristic advantages. Unfortunately, focusing on algorithm optimization rather than a large-scale parallel HPT system, existing SMBO-based approaches still cannot effectively remove their strong sequential nature, posing two performance problems: (1) \\n<i>extremely low tuning speed</i>\\n and (2) \\n<i>sub-optimal model quality</i>\\n. In this paper, we propose FastTuning, a fast, scalable, and generic system aiming at parallelly accelerating SMBO-based HPT for large DL/ML models. The key is to partition the highly complex search space into multiple smaller sub-spaces, each of which is assigned to and optimized by a different tuning worker in parallel. However, determining the right level of resource allocation to strike a balance between quality and cost remains a challenge. To address this, we further propose NIMBLE, a dynamic scheduling strategy that is specially designed for FastTuning, including (1) Dynamic Elimination Algorithm, (2) Sub-space Re-division, and (3) Posterior Information Sharing. Finally, we incorporate 6 SOTAs (i.e., 3 tuning algorithms and 3 parallel tuning tools) into FastTuning. Experimental results, on ResNet18, VGG19, ResNet50, and ResNet152, show that FastTuning can consistently offer much faster tuning speed (up to \\n<inline-formula><tex-math>$80\\\\times$</tex-math></inline-formula>\\n) with better accuracy (up to 4.7% improvement), thereby enabling the application of automatic HPT to real-life DL models.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":\"35 7\",\"pages\":\"1174-1188\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10496193/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10496193/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
FastTuning: Enabling Fast and Efficient Hyper-Parameter Tuning With Partitioning and Parallelism of Search Space
Hyper-parameter tuning (HPT) for deep learning (DL) models is prohibitively expensive. Sequential model-based optimization (SMBO) emerges as the state-of-the-art (SOTA) approach to automatically optimize HPT performance due to its heuristic advantages. Unfortunately, focusing on algorithm optimization rather than a large-scale parallel HPT system, existing SMBO-based approaches still cannot effectively remove their strong sequential nature, posing two performance problems: (1)
extremely low tuning speed
and (2)
sub-optimal model quality
. In this paper, we propose FastTuning, a fast, scalable, and generic system aiming at parallelly accelerating SMBO-based HPT for large DL/ML models. The key is to partition the highly complex search space into multiple smaller sub-spaces, each of which is assigned to and optimized by a different tuning worker in parallel. However, determining the right level of resource allocation to strike a balance between quality and cost remains a challenge. To address this, we further propose NIMBLE, a dynamic scheduling strategy that is specially designed for FastTuning, including (1) Dynamic Elimination Algorithm, (2) Sub-space Re-division, and (3) Posterior Information Sharing. Finally, we incorporate 6 SOTAs (i.e., 3 tuning algorithms and 3 parallel tuning tools) into FastTuning. Experimental results, on ResNet18, VGG19, ResNet50, and ResNet152, show that FastTuning can consistently offer much faster tuning speed (up to
$80\times$
) with better accuracy (up to 4.7% improvement), thereby enabling the application of automatic HPT to real-life DL models.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.