一类多边形的新覆盖和光照结果

Pub Date : 2024-04-08 DOI:10.1007/s00013-024-01985-z
Shenghua Gao, Horst Martini, Senlin Wu, Longzhen Zhang
{"title":"一类多边形的新覆盖和光照结果","authors":"Shenghua Gao,&nbsp;Horst Martini,&nbsp;Senlin Wu,&nbsp;Longzhen Zhang","doi":"10.1007/s00013-024-01985-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we focus on covering and illumination properties of a specific class of convex polytopes denoted by <span>\\(\\mathcal {P}\\)</span>. These polytopes are obtained as the convex hull of the Minkowski sum of a finite subset of <span>\\(\\mathbb {Z}^n\\)</span> and <span>\\((1/2)[-1,1]^n\\)</span>. Our investigation includes the verification of Hadwiger’s covering conjecture for <span>\\(\\mathcal {P}\\)</span>, as well as the estimation of the covering functional for convex polytopes in <span>\\(\\mathcal {P}\\)</span>. Furthermore, we demonstrate that when an integer <i>M</i> is sufficiently large, the elements belonging to <span>\\(\\mathcal {P}\\)</span> that are contained in <span>\\(M[-1,1]^n\\)</span> serve as an <span>\\(\\varepsilon \\)</span>-net for the space of convex bodies in <span>\\(\\mathbb {R}^n\\)</span>, equipped with the Banach–Mazur metric.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New covering and illumination results for a class of polytopes\",\"authors\":\"Shenghua Gao,&nbsp;Horst Martini,&nbsp;Senlin Wu,&nbsp;Longzhen Zhang\",\"doi\":\"10.1007/s00013-024-01985-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we focus on covering and illumination properties of a specific class of convex polytopes denoted by <span>\\\\(\\\\mathcal {P}\\\\)</span>. These polytopes are obtained as the convex hull of the Minkowski sum of a finite subset of <span>\\\\(\\\\mathbb {Z}^n\\\\)</span> and <span>\\\\((1/2)[-1,1]^n\\\\)</span>. Our investigation includes the verification of Hadwiger’s covering conjecture for <span>\\\\(\\\\mathcal {P}\\\\)</span>, as well as the estimation of the covering functional for convex polytopes in <span>\\\\(\\\\mathcal {P}\\\\)</span>. Furthermore, we demonstrate that when an integer <i>M</i> is sufficiently large, the elements belonging to <span>\\\\(\\\\mathcal {P}\\\\)</span> that are contained in <span>\\\\(M[-1,1]^n\\\\)</span> serve as an <span>\\\\(\\\\varepsilon \\\\)</span>-net for the space of convex bodies in <span>\\\\(\\\\mathbb {R}^n\\\\)</span>, equipped with the Banach–Mazur metric.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-01985-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01985-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将重点研究一类特定的凸多面体(用 \(\mathcal {P}\ 表示)的覆盖和光照特性。这些多面体是作为 \(\mathbb {Z}^n\) 和 \((1/2)[-1,1]^n\)的有限子集的闵科夫斯基和的凸壳得到的。我们的研究包括验证 Hadwiger 对 \(\mathcal {P}\) 的覆盖猜想,以及估计 \(\mathcal {P}\) 中凸多面体的覆盖函数。此外,我们证明了当整数M足够大时,属于\(\mathcal {P}\)的、包含在\(M[-1,1]^n\)中的元素可以作为\(\mathbb {R}^n\)中凸体空间的\(\varepsilon \)-网,并配备巴纳赫-马祖尔度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
New covering and illumination results for a class of polytopes

In this paper, we focus on covering and illumination properties of a specific class of convex polytopes denoted by \(\mathcal {P}\). These polytopes are obtained as the convex hull of the Minkowski sum of a finite subset of \(\mathbb {Z}^n\) and \((1/2)[-1,1]^n\). Our investigation includes the verification of Hadwiger’s covering conjecture for \(\mathcal {P}\), as well as the estimation of the covering functional for convex polytopes in \(\mathcal {P}\). Furthermore, we demonstrate that when an integer M is sufficiently large, the elements belonging to \(\mathcal {P}\) that are contained in \(M[-1,1]^n\) serve as an \(\varepsilon \)-net for the space of convex bodies in \(\mathbb {R}^n\), equipped with the Banach–Mazur metric.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信