半线性抛物方程的最小周期

Pub Date : 2024-04-12 DOI:10.1007/s00013-024-01970-6
Gerd Herzog, Peer Christian Kunstmann
{"title":"半线性抛物方程的最小周期","authors":"Gerd Herzog,&nbsp;Peer Christian Kunstmann","doi":"10.1007/s00013-024-01970-6","DOIUrl":null,"url":null,"abstract":"<div><p>We show that, if <span>\\(-A\\)</span> generates a bounded holomorphic semigroup in a Banach space <i>X</i>, <span>\\(\\alpha \\in [0,1)\\)</span>, and <span>\\(f:D(A)\\rightarrow X\\)</span> satisfies <span>\\(\\Vert f(x)-f(y)\\Vert \\le L\\Vert A^\\alpha (x-y)\\Vert \\)</span>, then a non-constant <i>T</i>-periodic solution of the equation <span>\\({\\dot{u}}+Au=f(u)\\)</span> satisfies <span>\\(LT^{1-\\alpha }\\ge K_\\alpha \\)</span> where <span>\\(K_\\alpha &gt;0\\)</span> is a constant depending on <span>\\(\\alpha \\)</span> and the semigroup. This extends results by Robinson and Vidal-Lopez, which have been shown for self-adjoint operators <span>\\(A\\ge 0\\)</span> in a Hilbert space. For the latter case, we obtain - with a conceptually new proof - the optimal constant <span>\\(K_\\alpha \\)</span>, which only depends on <span>\\(\\alpha \\)</span>, and we also include the case <span>\\(\\alpha =1\\)</span>. In Hilbert spaces <i>H</i> and for <span>\\(\\alpha =0\\)</span>, we present a similar result with optimal constant where <i>Au</i> in the equation is replaced by a possibly unbounded gradient term <span>\\(\\nabla _H{\\mathscr {E}}(u)\\)</span>. This is inspired by applications with bounded gradient terms in a paper by Mawhin and Walter.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-01970-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Minimal periods for semilinear parabolic equations\",\"authors\":\"Gerd Herzog,&nbsp;Peer Christian Kunstmann\",\"doi\":\"10.1007/s00013-024-01970-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that, if <span>\\\\(-A\\\\)</span> generates a bounded holomorphic semigroup in a Banach space <i>X</i>, <span>\\\\(\\\\alpha \\\\in [0,1)\\\\)</span>, and <span>\\\\(f:D(A)\\\\rightarrow X\\\\)</span> satisfies <span>\\\\(\\\\Vert f(x)-f(y)\\\\Vert \\\\le L\\\\Vert A^\\\\alpha (x-y)\\\\Vert \\\\)</span>, then a non-constant <i>T</i>-periodic solution of the equation <span>\\\\({\\\\dot{u}}+Au=f(u)\\\\)</span> satisfies <span>\\\\(LT^{1-\\\\alpha }\\\\ge K_\\\\alpha \\\\)</span> where <span>\\\\(K_\\\\alpha &gt;0\\\\)</span> is a constant depending on <span>\\\\(\\\\alpha \\\\)</span> and the semigroup. This extends results by Robinson and Vidal-Lopez, which have been shown for self-adjoint operators <span>\\\\(A\\\\ge 0\\\\)</span> in a Hilbert space. For the latter case, we obtain - with a conceptually new proof - the optimal constant <span>\\\\(K_\\\\alpha \\\\)</span>, which only depends on <span>\\\\(\\\\alpha \\\\)</span>, and we also include the case <span>\\\\(\\\\alpha =1\\\\)</span>. In Hilbert spaces <i>H</i> and for <span>\\\\(\\\\alpha =0\\\\)</span>, we present a similar result with optimal constant where <i>Au</i> in the equation is replaced by a possibly unbounded gradient term <span>\\\\(\\\\nabla _H{\\\\mathscr {E}}(u)\\\\)</span>. This is inspired by applications with bounded gradient terms in a paper by Mawhin and Walter.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-024-01970-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-01970-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01970-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,如果 \(-A\) 在一个巴拿赫空间 X 中产生一个有界全形半群, \(\alpha \in [0,1)\), 并且 \(f. D(A)\rightarrow X\) 满足 \(\Vert f(x)-f(y)\Vert\le L\Vert A^\alpha (x-y)\)D(A)\rightarrow X\) 满足(\Vert f(x)-f(y)\Vert \le L\Vert A^alpha (x-y)\Vert \)、那么方程 \({\dot{u}}+Au=f(u)\) 的非恒定 T 周期解满足 \(LT^{1-\alpha }\ge K_\alpha \) 其中 \(K_\alpha >;0) 是一个常数,取决于 \(\alpha \) 和半群。这扩展了罗宾逊(Robinson)和维达尔-洛佩兹(Vidal-Lopez)的结果,这些结果已经在希尔伯特空间中的自(\ge 0\ )算子中得到了证明。对于后一种情况,我们用一个新的概念证明得到了最优常数\(K_\alpha \),它只取决于\(\alpha \),我们还包括\(\alpha =1\)的情况。在希尔伯特空间 H 中,对于 \(\alpha =0\),我们提出了一个具有最优常数的类似结果,其中方程中的 Au 被一个可能无约束的梯度项 \(\nabla_H{mathscr{E}}(u)\)所取代。这是受 Mawhin 和 Walter 的论文中有界梯度项应用的启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Minimal periods for semilinear parabolic equations

分享
查看原文
Minimal periods for semilinear parabolic equations

We show that, if \(-A\) generates a bounded holomorphic semigroup in a Banach space X, \(\alpha \in [0,1)\), and \(f:D(A)\rightarrow X\) satisfies \(\Vert f(x)-f(y)\Vert \le L\Vert A^\alpha (x-y)\Vert \), then a non-constant T-periodic solution of the equation \({\dot{u}}+Au=f(u)\) satisfies \(LT^{1-\alpha }\ge K_\alpha \) where \(K_\alpha >0\) is a constant depending on \(\alpha \) and the semigroup. This extends results by Robinson and Vidal-Lopez, which have been shown for self-adjoint operators \(A\ge 0\) in a Hilbert space. For the latter case, we obtain - with a conceptually new proof - the optimal constant \(K_\alpha \), which only depends on \(\alpha \), and we also include the case \(\alpha =1\). In Hilbert spaces H and for \(\alpha =0\), we present a similar result with optimal constant where Au in the equation is replaced by a possibly unbounded gradient term \(\nabla _H{\mathscr {E}}(u)\). This is inspired by applications with bounded gradient terms in a paper by Mawhin and Walter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信