关于有限度量空间上的利普齐兹单位球的极值点和表示定理

IF 0.5 4区 数学 Q3 MATHEMATICS
Kristian Bredies, Jonathan Chirinos Rodriguez, Emanuele Naldi
{"title":"关于有限度量空间上的利普齐兹单位球的极值点和表示定理","authors":"Kristian Bredies,&nbsp;Jonathan Chirinos Rodriguez,&nbsp;Emanuele Naldi","doi":"10.1007/s00013-024-01978-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this note, we provide a characterization for the set of extreme points of the Lipschitz unit ball in a specific vectorial setting. While the analysis of the case of real-valued functions is covered extensively in the literature, no information about the vectorial case has been provided up to date. Here, we aim at partially filling this gap by considering functions mapping from a finite metric space to a strictly convex Banach space that satisfy the Lipschitz condition. As a consequence, we present a representer theorem for such functions. In this setting, the number of extreme points needed to express any point inside the ball is independent of the dimension, improving the classical result from Carathéodory.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"122 6","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-01978-y.pdf","citationCount":"0","resultStr":"{\"title\":\"On extreme points and representer theorems for the Lipschitz unit ball on finite metric spaces\",\"authors\":\"Kristian Bredies,&nbsp;Jonathan Chirinos Rodriguez,&nbsp;Emanuele Naldi\",\"doi\":\"10.1007/s00013-024-01978-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this note, we provide a characterization for the set of extreme points of the Lipschitz unit ball in a specific vectorial setting. While the analysis of the case of real-valued functions is covered extensively in the literature, no information about the vectorial case has been provided up to date. Here, we aim at partially filling this gap by considering functions mapping from a finite metric space to a strictly convex Banach space that satisfy the Lipschitz condition. As a consequence, we present a representer theorem for such functions. In this setting, the number of extreme points needed to express any point inside the ball is independent of the dimension, improving the classical result from Carathéodory.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"122 6\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-024-01978-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-01978-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01978-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本论文中,我们提供了在特定矢量情况下的 Lipschitz 单位球极值点集合的特征。文献中对实值函数情况的分析已被广泛涉及,但迄今为止还没有关于矢量情况的信息。在这里,我们考虑了从有限度量空间映射到严格凸巴纳赫空间的函数,这些函数满足 Lipschitz 条件,从而部分填补了这一空白。因此,我们提出了此类函数的代表者定理。在这种情况下,表达球内任意点所需的极值点数量与维度无关,从而改进了卡拉瑟奥多里的经典结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On extreme points and representer theorems for the Lipschitz unit ball on finite metric spaces

In this note, we provide a characterization for the set of extreme points of the Lipschitz unit ball in a specific vectorial setting. While the analysis of the case of real-valued functions is covered extensively in the literature, no information about the vectorial case has been provided up to date. Here, we aim at partially filling this gap by considering functions mapping from a finite metric space to a strictly convex Banach space that satisfy the Lipschitz condition. As a consequence, we present a representer theorem for such functions. In this setting, the number of extreme points needed to express any point inside the ball is independent of the dimension, improving the classical result from Carathéodory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信