论希尔伯特空间中距离函数的奇点

Pub Date : 2024-04-08 DOI:10.1007/s00013-024-01987-x
Thomas Strömberg
{"title":"论希尔伯特空间中距离函数的奇点","authors":"Thomas Strömberg","doi":"10.1007/s00013-024-01987-x","DOIUrl":null,"url":null,"abstract":"<div><p>For a given closed nonempty subset <i>E</i> of a Hilbert space <i>H</i>, the singular set <span>\\(\\Sigma _E\\)</span> consists of the points in <span>\\(H\\setminus E\\)</span> where the distance function <span>\\(d_E\\)</span> is not Fréchet differentiable. It is known that <span>\\(\\Sigma _E\\)</span> is a weak deformation retract of the open set <span>\\(\\mathcal {G}_E=\\{x\\in H: d_{\\overline{{\\text {co}}}\\,E}(x)&lt; d_E(x)\\}\\)</span>. This short paper sheds light on the relationship between the connected components of the three sets <span>\\(\\Sigma _E\\subset \\mathcal {G}_E\\subseteq H{\\setminus } E\\)</span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-01987-x.pdf","citationCount":"0","resultStr":"{\"title\":\"On the singularities of distance functions in Hilbert spaces\",\"authors\":\"Thomas Strömberg\",\"doi\":\"10.1007/s00013-024-01987-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a given closed nonempty subset <i>E</i> of a Hilbert space <i>H</i>, the singular set <span>\\\\(\\\\Sigma _E\\\\)</span> consists of the points in <span>\\\\(H\\\\setminus E\\\\)</span> where the distance function <span>\\\\(d_E\\\\)</span> is not Fréchet differentiable. It is known that <span>\\\\(\\\\Sigma _E\\\\)</span> is a weak deformation retract of the open set <span>\\\\(\\\\mathcal {G}_E=\\\\{x\\\\in H: d_{\\\\overline{{\\\\text {co}}}\\\\,E}(x)&lt; d_E(x)\\\\}\\\\)</span>. This short paper sheds light on the relationship between the connected components of the three sets <span>\\\\(\\\\Sigma _E\\\\subset \\\\mathcal {G}_E\\\\subseteq H{\\\\setminus } E\\\\)</span>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-024-01987-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-01987-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01987-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于希尔伯特空间 H 的给定封闭非空子集 E,奇异集 \(\Sigma _E\) 由距离函数 \(d_E\) 不可弗雷谢特微分的 \(H\setminus E\) 中的点组成。众所周知,\(\Sigma _E\)是开集\(\mathcal {G}_E=\{x\in H: d_\{overline{{text {co}}\,E}(x)< d_E(x)\})的弱变形缩回。)这篇短文揭示了三个集合 \(\Sigma _E\subset \mathcal {G}_E\subseteq H{setminus } E\) 的连接成分之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the singularities of distance functions in Hilbert spaces

For a given closed nonempty subset E of a Hilbert space H, the singular set \(\Sigma _E\) consists of the points in \(H\setminus E\) where the distance function \(d_E\) is not Fréchet differentiable. It is known that \(\Sigma _E\) is a weak deformation retract of the open set \(\mathcal {G}_E=\{x\in H: d_{\overline{{\text {co}}}\,E}(x)< d_E(x)\}\). This short paper sheds light on the relationship between the connected components of the three sets \(\Sigma _E\subset \mathcal {G}_E\subseteq H{\setminus } E\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信