$$\mathbb {P}^{2}$ 中点集合的模域

Pub Date : 2024-04-09 DOI:10.1007/s00013-024-01984-0
Giulio Bresciani
{"title":"$$\\mathbb {P}^{2}$ 中点集合的模域","authors":"Giulio Bresciani","doi":"10.1007/s00013-024-01984-0","DOIUrl":null,"url":null,"abstract":"<div><p>For every <span>\\(n\\ge 6\\)</span>, we give an example of a finite subset of <span>\\(\\mathbb {P}^{2}\\)</span> of degree <i>n</i> which does not descend to any Brauer–Severi surface over the field of moduli. Conversely, for every <span>\\(n\\le 5\\)</span>, we prove that a finite subset of degree <i>n</i> always descends to a 0-cycle on <span>\\(\\mathbb {P}^{2}\\)</span> over the field of moduli.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-01984-0.pdf","citationCount":"0","resultStr":"{\"title\":\"The field of moduli of sets of points in \\\\(\\\\mathbb {P}^{2}\\\\)\",\"authors\":\"Giulio Bresciani\",\"doi\":\"10.1007/s00013-024-01984-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For every <span>\\\\(n\\\\ge 6\\\\)</span>, we give an example of a finite subset of <span>\\\\(\\\\mathbb {P}^{2}\\\\)</span> of degree <i>n</i> which does not descend to any Brauer–Severi surface over the field of moduli. Conversely, for every <span>\\\\(n\\\\le 5\\\\)</span>, we prove that a finite subset of degree <i>n</i> always descends to a 0-cycle on <span>\\\\(\\\\mathbb {P}^{2}\\\\)</span> over the field of moduli.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-024-01984-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-01984-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01984-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于每一个 \(n\ge 6\), 我们举例说明,度数为 n 的 \(\mathbb {P}^{2}\) 的有限子集不会下降到模域上的任何 Brauer-Severi 曲面。反过来,对于每一个 \(n\le 5\), 我们证明度数为 n 的有限子集总是下降到模域上\(\mathbb {P}^{2}\) 的一个 0 循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The field of moduli of sets of points in \(\mathbb {P}^{2}\)

For every \(n\ge 6\), we give an example of a finite subset of \(\mathbb {P}^{2}\) of degree n which does not descend to any Brauer–Severi surface over the field of moduli. Conversely, for every \(n\le 5\), we prove that a finite subset of degree n always descends to a 0-cycle on \(\mathbb {P}^{2}\) over the field of moduli.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信