{"title":"$$\\mathbb {P}^{2}$ 中点集合的模域","authors":"Giulio Bresciani","doi":"10.1007/s00013-024-01984-0","DOIUrl":null,"url":null,"abstract":"<div><p>For every <span>\\(n\\ge 6\\)</span>, we give an example of a finite subset of <span>\\(\\mathbb {P}^{2}\\)</span> of degree <i>n</i> which does not descend to any Brauer–Severi surface over the field of moduli. Conversely, for every <span>\\(n\\le 5\\)</span>, we prove that a finite subset of degree <i>n</i> always descends to a 0-cycle on <span>\\(\\mathbb {P}^{2}\\)</span> over the field of moduli.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-01984-0.pdf","citationCount":"0","resultStr":"{\"title\":\"The field of moduli of sets of points in \\\\(\\\\mathbb {P}^{2}\\\\)\",\"authors\":\"Giulio Bresciani\",\"doi\":\"10.1007/s00013-024-01984-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For every <span>\\\\(n\\\\ge 6\\\\)</span>, we give an example of a finite subset of <span>\\\\(\\\\mathbb {P}^{2}\\\\)</span> of degree <i>n</i> which does not descend to any Brauer–Severi surface over the field of moduli. Conversely, for every <span>\\\\(n\\\\le 5\\\\)</span>, we prove that a finite subset of degree <i>n</i> always descends to a 0-cycle on <span>\\\\(\\\\mathbb {P}^{2}\\\\)</span> over the field of moduli.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-024-01984-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-01984-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01984-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
对于每一个 \(n\ge 6\), 我们举例说明,度数为 n 的 \(\mathbb {P}^{2}\) 的有限子集不会下降到模域上的任何 Brauer-Severi 曲面。反过来,对于每一个 \(n\le 5\), 我们证明度数为 n 的有限子集总是下降到模域上\(\mathbb {P}^{2}\) 的一个 0 循环。
The field of moduli of sets of points in \(\mathbb {P}^{2}\)
For every \(n\ge 6\), we give an example of a finite subset of \(\mathbb {P}^{2}\) of degree n which does not descend to any Brauer–Severi surface over the field of moduli. Conversely, for every \(n\le 5\), we prove that a finite subset of degree n always descends to a 0-cycle on \(\mathbb {P}^{2}\) over the field of moduli.