达尼尔积分的富比尼定理

Pub Date : 2024-04-09 DOI:10.1007/s00013-024-01988-w
Götz Kersting, Gerhard Rompf
{"title":"达尼尔积分的富比尼定理","authors":"Götz Kersting,&nbsp;Gerhard Rompf","doi":"10.1007/s00013-024-01988-w","DOIUrl":null,"url":null,"abstract":"<div><p>We show that in the theory of Daniell integration iterated integrals may always be formed, and the order of integration may always be interchanged. By this means, we discuss product integrals and show that the related Fubini theorem holds in full generality. The results build on a density theorem on Riesz tensor products due to Fremlin, and on the Fubini–Stone theorem.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-01988-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Fubini’s theorem for Daniell integrals\",\"authors\":\"Götz Kersting,&nbsp;Gerhard Rompf\",\"doi\":\"10.1007/s00013-024-01988-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that in the theory of Daniell integration iterated integrals may always be formed, and the order of integration may always be interchanged. By this means, we discuss product integrals and show that the related Fubini theorem holds in full generality. The results build on a density theorem on Riesz tensor products due to Fremlin, and on the Fubini–Stone theorem.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-024-01988-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-01988-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01988-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,在丹尼尔积分理论中,迭代积分总是可以形成的,积分的顺序总是可以互换的。通过这种方法,我们讨论了积积分,并证明相关的富比尼定理在一般情况下完全成立。这些结果建立在弗雷姆林(Fremlin)提出的关于里兹张量乘积的密度定理和富比尼-斯通(Fubini-Stone)定理的基础之上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Fubini’s theorem for Daniell integrals

We show that in the theory of Daniell integration iterated integrals may always be formed, and the order of integration may always be interchanged. By this means, we discuss product integrals and show that the related Fubini theorem holds in full generality. The results build on a density theorem on Riesz tensor products due to Fremlin, and on the Fubini–Stone theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信