{"title":"达尼尔积分的富比尼定理","authors":"Götz Kersting, Gerhard Rompf","doi":"10.1007/s00013-024-01988-w","DOIUrl":null,"url":null,"abstract":"<div><p>We show that in the theory of Daniell integration iterated integrals may always be formed, and the order of integration may always be interchanged. By this means, we discuss product integrals and show that the related Fubini theorem holds in full generality. The results build on a density theorem on Riesz tensor products due to Fremlin, and on the Fubini–Stone theorem.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"123 1","pages":"57 - 64"},"PeriodicalIF":0.5000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-01988-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Fubini’s theorem for Daniell integrals\",\"authors\":\"Götz Kersting, Gerhard Rompf\",\"doi\":\"10.1007/s00013-024-01988-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that in the theory of Daniell integration iterated integrals may always be formed, and the order of integration may always be interchanged. By this means, we discuss product integrals and show that the related Fubini theorem holds in full generality. The results build on a density theorem on Riesz tensor products due to Fremlin, and on the Fubini–Stone theorem.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"123 1\",\"pages\":\"57 - 64\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-024-01988-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-01988-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01988-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We show that in the theory of Daniell integration iterated integrals may always be formed, and the order of integration may always be interchanged. By this means, we discuss product integrals and show that the related Fubini theorem holds in full generality. The results build on a density theorem on Riesz tensor products due to Fremlin, and on the Fubini–Stone theorem.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.