{"title":"达尼尔积分的富比尼定理","authors":"Götz Kersting, Gerhard Rompf","doi":"10.1007/s00013-024-01988-w","DOIUrl":null,"url":null,"abstract":"<div><p>We show that in the theory of Daniell integration iterated integrals may always be formed, and the order of integration may always be interchanged. By this means, we discuss product integrals and show that the related Fubini theorem holds in full generality. The results build on a density theorem on Riesz tensor products due to Fremlin, and on the Fubini–Stone theorem.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-01988-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Fubini’s theorem for Daniell integrals\",\"authors\":\"Götz Kersting, Gerhard Rompf\",\"doi\":\"10.1007/s00013-024-01988-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that in the theory of Daniell integration iterated integrals may always be formed, and the order of integration may always be interchanged. By this means, we discuss product integrals and show that the related Fubini theorem holds in full generality. The results build on a density theorem on Riesz tensor products due to Fremlin, and on the Fubini–Stone theorem.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-024-01988-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-01988-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01988-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that in the theory of Daniell integration iterated integrals may always be formed, and the order of integration may always be interchanged. By this means, we discuss product integrals and show that the related Fubini theorem holds in full generality. The results build on a density theorem on Riesz tensor products due to Fremlin, and on the Fubini–Stone theorem.