$$(m+4)$$维非线性动态系统多周期解的分岔

IF 1.4 4区 物理与天体物理 Q2 MATHEMATICS, APPLIED
{"title":"$$(m+4)$$维非线性动态系统多周期解的分岔","authors":"","doi":"10.1007/s44198-024-00181-5","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, we introduce a curvilinear coordinate transformation to study the bifurcation of periodic solutions from a 2-degree-of-freedom Hamiltonian system, when it is perturbed in <span> <span>\\({\\textbf{R}}^{m+4}\\)</span> </span>, where <em>m</em> represents any positive integer. The extended Melnikov function is obtained by constructing a Poincaré map on the curvilinear coordinate frame of the trajectory of the unperturbed system. Then the criteria for bifurcation of periodic solutions of these Hamiltonian systems under isochronous and non-isochronous conditions are obtained. As for its application, we study the number of periodic solutions of a composite piezoelectric cantilever rectangular plate system whose averaged equation can be transformed into a <span> <span>\\((2+4)\\)</span> </span>-dimensional dynamical system. Furthermore, under the two resonance conditions of 1:1 and 1:2, we obtain the periodic solution numbers of this system with the variation of parametric excitation coefficient <span> <span>\\(p_1.\\)</span> </span></p>","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"22 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation of Multiple Periodic Solutions for a Class of Nonlinear Dynamical Systems in $$(m+4)$$ -Dimension\",\"authors\":\"\",\"doi\":\"10.1007/s44198-024-00181-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this paper, we introduce a curvilinear coordinate transformation to study the bifurcation of periodic solutions from a 2-degree-of-freedom Hamiltonian system, when it is perturbed in <span> <span>\\\\({\\\\textbf{R}}^{m+4}\\\\)</span> </span>, where <em>m</em> represents any positive integer. The extended Melnikov function is obtained by constructing a Poincaré map on the curvilinear coordinate frame of the trajectory of the unperturbed system. Then the criteria for bifurcation of periodic solutions of these Hamiltonian systems under isochronous and non-isochronous conditions are obtained. As for its application, we study the number of periodic solutions of a composite piezoelectric cantilever rectangular plate system whose averaged equation can be transformed into a <span> <span>\\\\((2+4)\\\\)</span> </span>-dimensional dynamical system. Furthermore, under the two resonance conditions of 1:1 and 1:2, we obtain the periodic solution numbers of this system with the variation of parametric excitation coefficient <span> <span>\\\\(p_1.\\\\)</span> </span></p>\",\"PeriodicalId\":48904,\"journal\":{\"name\":\"Journal of Nonlinear Mathematical Physics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s44198-024-00181-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s44198-024-00181-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文引入一种曲线坐标变换来研究二自由度哈密顿系统在 \({\textbf{R}}^{m+4}\) 中受到扰动时周期解的分岔问题,其中 m 代表任意正整数。通过在未扰动系统轨迹的曲线坐标系上构建一个普因卡雷映射,可以得到扩展梅尔尼科夫函数。然后得到了这些哈密顿系统的周期解在等时和非等时条件下的分岔准则。至于其应用,我们研究了一个复合压电悬臂矩形板系统的周期解的数量,该系统的平均方程可以转化为一个((2+4)\)-维动力系统。此外,在 1:1 和 1:2 两种共振条件下,我们得到了该系统的周期解数随参数激励系数 \(p_1.\)的变化而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcation of Multiple Periodic Solutions for a Class of Nonlinear Dynamical Systems in $$(m+4)$$ -Dimension

Abstract

In this paper, we introduce a curvilinear coordinate transformation to study the bifurcation of periodic solutions from a 2-degree-of-freedom Hamiltonian system, when it is perturbed in \({\textbf{R}}^{m+4}\) , where m represents any positive integer. The extended Melnikov function is obtained by constructing a Poincaré map on the curvilinear coordinate frame of the trajectory of the unperturbed system. Then the criteria for bifurcation of periodic solutions of these Hamiltonian systems under isochronous and non-isochronous conditions are obtained. As for its application, we study the number of periodic solutions of a composite piezoelectric cantilever rectangular plate system whose averaged equation can be transformed into a \((2+4)\) -dimensional dynamical system. Furthermore, under the two resonance conditions of 1:1 and 1:2, we obtain the periodic solution numbers of this system with the variation of parametric excitation coefficient \(p_1.\)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nonlinear Mathematical Physics
Journal of Nonlinear Mathematical Physics PHYSICS, MATHEMATICAL-PHYSICS, MATHEMATICAL
CiteScore
1.60
自引率
0.00%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Nonlinear Mathematical Physics (JNMP) publishes research papers on fundamental mathematical and computational methods in mathematical physics in the form of Letters, Articles, and Review Articles. Journal of Nonlinear Mathematical Physics is a mathematical journal devoted to the publication of research papers concerned with the description, solution, and applications of nonlinear problems in physics and mathematics. The main subjects are: -Nonlinear Equations of Mathematical Physics- Quantum Algebras and Integrability- Discrete Integrable Systems and Discrete Geometry- Applications of Lie Group Theory and Lie Algebras- Non-Commutative Geometry- Super Geometry and Super Integrable System- Integrability and Nonintegrability, Painleve Analysis- Inverse Scattering Method- Geometry of Soliton Equations and Applications of Twistor Theory- Classical and Quantum Many Body Problems- Deformation and Geometric Quantization- Instanton, Monopoles and Gauge Theory- Differential Geometry and Mathematical Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信