{"title":"非交换月桂多项式环上 $$GL_n$$ 的松本类型定理","authors":"Ryusuke Sugawara","doi":"10.1007/s40062-024-00345-6","DOIUrl":null,"url":null,"abstract":"<div><p>We give a Matsumoto-type presentation of <span>\\(K_2\\)</span>-groups over rings of non-commutative Laurent polynomials, which is a non-commutative version of M. Tomie’s result for loop groups. Our main idea is induced by U. Rehmann’s approach in the case of division rings.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"19 2","pages":"151 - 180"},"PeriodicalIF":0.7000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Matsumoto type theorem for \\\\(GL_n\\\\) over rings of non-commutative Laurent polynomials\",\"authors\":\"Ryusuke Sugawara\",\"doi\":\"10.1007/s40062-024-00345-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We give a Matsumoto-type presentation of <span>\\\\(K_2\\\\)</span>-groups over rings of non-commutative Laurent polynomials, which is a non-commutative version of M. Tomie’s result for loop groups. Our main idea is induced by U. Rehmann’s approach in the case of division rings.</p></div>\",\"PeriodicalId\":49034,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"19 2\",\"pages\":\"151 - 180\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-024-00345-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-024-00345-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要 我们给出了非交换劳伦特多项式环上的\(K_2\) -群的松本类型表示,这是富江(M. Tomie)关于环群的结果的非交换版本。我们的主要想法是由 U. Rehmann 在划分环情况下的方法诱发的。
A Matsumoto type theorem for \(GL_n\) over rings of non-commutative Laurent polynomials
We give a Matsumoto-type presentation of \(K_2\)-groups over rings of non-commutative Laurent polynomials, which is a non-commutative version of M. Tomie’s result for loop groups. Our main idea is induced by U. Rehmann’s approach in the case of division rings.
期刊介绍:
Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences.
Journal of Homotopy and Related Structures is intended to publish papers on
Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.