非交换月桂多项式环上 $$GL_n$$ 的松本类型定理

Pub Date : 2024-04-06 DOI:10.1007/s40062-024-00345-6
Ryusuke Sugawara
{"title":"非交换月桂多项式环上 $$GL_n$$ 的松本类型定理","authors":"Ryusuke Sugawara","doi":"10.1007/s40062-024-00345-6","DOIUrl":null,"url":null,"abstract":"<div><p>We give a Matsumoto-type presentation of <span>\\(K_2\\)</span>-groups over rings of non-commutative Laurent polynomials, which is a non-commutative version of M. Tomie’s result for loop groups. Our main idea is induced by U. Rehmann’s approach in the case of division rings.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Matsumoto type theorem for \\\\(GL_n\\\\) over rings of non-commutative Laurent polynomials\",\"authors\":\"Ryusuke Sugawara\",\"doi\":\"10.1007/s40062-024-00345-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We give a Matsumoto-type presentation of <span>\\\\(K_2\\\\)</span>-groups over rings of non-commutative Laurent polynomials, which is a non-commutative version of M. Tomie’s result for loop groups. Our main idea is induced by U. Rehmann’s approach in the case of division rings.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-024-00345-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-024-00345-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们给出了非交换劳伦特多项式环上的\(K_2\) -群的松本类型表示,这是富江(M. Tomie)关于环群的结果的非交换版本。我们的主要想法是由 U. Rehmann 在划分环情况下的方法诱发的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A Matsumoto type theorem for \(GL_n\) over rings of non-commutative Laurent polynomials

We give a Matsumoto-type presentation of \(K_2\)-groups over rings of non-commutative Laurent polynomials, which is a non-commutative version of M. Tomie’s result for loop groups. Our main idea is induced by U. Rehmann’s approach in the case of division rings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信