{"title":"利用时间感知协同过滤技术选择基于服务质量的网络服务:文献综述","authors":"Ezdehar Jawabreh, Adel Taweel","doi":"10.1007/s00607-024-01283-0","DOIUrl":null,"url":null,"abstract":"<p>The proliferation of available Web services presents a big challenge in selecting suitable services. Various methods have been devised to predict Quality of Service (QoS) values, aiming to address the service selection problem. However, these methods encounter numerous limitations that hinder their prediction accuracy. A key issue stems from the dynamic nature of the service environment, leading to fluctuations in QoS values due to factors like network load and hardware issues. To mitigate these challenges, QoS selection methods have leveraged contextual information from the surrounding environments, such as service invocation time, user, and service locations. Among these methods, Collaborative Filtering (CF) has gained notable importance. In recent years, several CF methods have incorporated service invocation time into their prediction processes, giving rise to what is commonly known as time-aware CF methods. Despite the increasing adoption of time-aware CF methods, there remains a notable absence of a dedicated and comprehensive literature review on this topic. Addressing this gap, this paper conducts an analysis of the literature, reviewing the forty (40) most prominent studies in this domain. It offers a thematic categorization of these studies along with an insightful analysis outlining their objectives, advantages, and limitations. The review also identifies key research gaps and proposes potential directions for future investigations. Overall, this literature review serves as an up-to-date resource for researchers engaged in service-oriented computing research.\n</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"4 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qos-based web service selection using time-aware collaborative filtering: a literature review\",\"authors\":\"Ezdehar Jawabreh, Adel Taweel\",\"doi\":\"10.1007/s00607-024-01283-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The proliferation of available Web services presents a big challenge in selecting suitable services. Various methods have been devised to predict Quality of Service (QoS) values, aiming to address the service selection problem. However, these methods encounter numerous limitations that hinder their prediction accuracy. A key issue stems from the dynamic nature of the service environment, leading to fluctuations in QoS values due to factors like network load and hardware issues. To mitigate these challenges, QoS selection methods have leveraged contextual information from the surrounding environments, such as service invocation time, user, and service locations. Among these methods, Collaborative Filtering (CF) has gained notable importance. In recent years, several CF methods have incorporated service invocation time into their prediction processes, giving rise to what is commonly known as time-aware CF methods. Despite the increasing adoption of time-aware CF methods, there remains a notable absence of a dedicated and comprehensive literature review on this topic. Addressing this gap, this paper conducts an analysis of the literature, reviewing the forty (40) most prominent studies in this domain. It offers a thematic categorization of these studies along with an insightful analysis outlining their objectives, advantages, and limitations. The review also identifies key research gaps and proposes potential directions for future investigations. Overall, this literature review serves as an up-to-date resource for researchers engaged in service-oriented computing research.\\n</p>\",\"PeriodicalId\":10718,\"journal\":{\"name\":\"Computing\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00607-024-01283-0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-024-01283-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Qos-based web service selection using time-aware collaborative filtering: a literature review
The proliferation of available Web services presents a big challenge in selecting suitable services. Various methods have been devised to predict Quality of Service (QoS) values, aiming to address the service selection problem. However, these methods encounter numerous limitations that hinder their prediction accuracy. A key issue stems from the dynamic nature of the service environment, leading to fluctuations in QoS values due to factors like network load and hardware issues. To mitigate these challenges, QoS selection methods have leveraged contextual information from the surrounding environments, such as service invocation time, user, and service locations. Among these methods, Collaborative Filtering (CF) has gained notable importance. In recent years, several CF methods have incorporated service invocation time into their prediction processes, giving rise to what is commonly known as time-aware CF methods. Despite the increasing adoption of time-aware CF methods, there remains a notable absence of a dedicated and comprehensive literature review on this topic. Addressing this gap, this paper conducts an analysis of the literature, reviewing the forty (40) most prominent studies in this domain. It offers a thematic categorization of these studies along with an insightful analysis outlining their objectives, advantages, and limitations. The review also identifies key research gaps and proposes potential directions for future investigations. Overall, this literature review serves as an up-to-date resource for researchers engaged in service-oriented computing research.
期刊介绍:
Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.