{"title":"基于弹性压力传感鞋垫系统的新型 FSVM 和 PSO 步态相位检测系统","authors":"Pingping Lv, Chi Zhang, Feng Yi, Ting Yuan, Shupei Li, Meitong Zhang","doi":"10.1007/s41315-024-00334-1","DOIUrl":null,"url":null,"abstract":"<p>The precise gait phase detection with lightweight equipment under variable conditions is crucial for low limb exoskeleton robots. Therefore, the kinematics and dynamics information are investigated. In this paper, a novel radius-margin-based support vector machine (SVM) model with particle swarm optimization (PSO) in feature space called PSO-FSVM is proposed for gait phase detection. The proposed method addresses the dual objectives of maximizing margin while minimizing radius, employing PSO to fine-tune the parameters of the FSVM. This enhancement significantly bolsters the classification accuracy of the SVM. For the measurement of gait features with a lightweight sensor system, the plantar pressure insoles equipped with flexible and elastic sensors are designed. To evaluate the effectiveness of our method, we conducted comparative experiments, pitting the proposed PSO-FSVM against other support vector machine variants, across four treadmill speeds. The experimental results indicate that the proposed method achieves an accuracy of over 98% at four different speeds indoors. Furthermore, the proposed method is compared with other algorithms (SVM, k-nearest neighbor (KNN), adaptive boosting (AdaBoost), and quadratic discriminant analysis (QDA)) under outdoor experiments. The experimental results demonstrate that the average recognition accuracy of this method reaches 96.13% under variable speed conditions, with an average accuracy of 98.06% under slow walking conditions, surpassing the performance of the above four algorithms.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":"38 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel FSVM with PSO for gait phase detection based on elastic pressure sensing insole system\",\"authors\":\"Pingping Lv, Chi Zhang, Feng Yi, Ting Yuan, Shupei Li, Meitong Zhang\",\"doi\":\"10.1007/s41315-024-00334-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The precise gait phase detection with lightweight equipment under variable conditions is crucial for low limb exoskeleton robots. Therefore, the kinematics and dynamics information are investigated. In this paper, a novel radius-margin-based support vector machine (SVM) model with particle swarm optimization (PSO) in feature space called PSO-FSVM is proposed for gait phase detection. The proposed method addresses the dual objectives of maximizing margin while minimizing radius, employing PSO to fine-tune the parameters of the FSVM. This enhancement significantly bolsters the classification accuracy of the SVM. For the measurement of gait features with a lightweight sensor system, the plantar pressure insoles equipped with flexible and elastic sensors are designed. To evaluate the effectiveness of our method, we conducted comparative experiments, pitting the proposed PSO-FSVM against other support vector machine variants, across four treadmill speeds. The experimental results indicate that the proposed method achieves an accuracy of over 98% at four different speeds indoors. Furthermore, the proposed method is compared with other algorithms (SVM, k-nearest neighbor (KNN), adaptive boosting (AdaBoost), and quadratic discriminant analysis (QDA)) under outdoor experiments. The experimental results demonstrate that the average recognition accuracy of this method reaches 96.13% under variable speed conditions, with an average accuracy of 98.06% under slow walking conditions, surpassing the performance of the above four algorithms.</p>\",\"PeriodicalId\":44563,\"journal\":{\"name\":\"International Journal of Intelligent Robotics and Applications\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Robotics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41315-024-00334-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Robotics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41315-024-00334-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
A Novel FSVM with PSO for gait phase detection based on elastic pressure sensing insole system
The precise gait phase detection with lightweight equipment under variable conditions is crucial for low limb exoskeleton robots. Therefore, the kinematics and dynamics information are investigated. In this paper, a novel radius-margin-based support vector machine (SVM) model with particle swarm optimization (PSO) in feature space called PSO-FSVM is proposed for gait phase detection. The proposed method addresses the dual objectives of maximizing margin while minimizing radius, employing PSO to fine-tune the parameters of the FSVM. This enhancement significantly bolsters the classification accuracy of the SVM. For the measurement of gait features with a lightweight sensor system, the plantar pressure insoles equipped with flexible and elastic sensors are designed. To evaluate the effectiveness of our method, we conducted comparative experiments, pitting the proposed PSO-FSVM against other support vector machine variants, across four treadmill speeds. The experimental results indicate that the proposed method achieves an accuracy of over 98% at four different speeds indoors. Furthermore, the proposed method is compared with other algorithms (SVM, k-nearest neighbor (KNN), adaptive boosting (AdaBoost), and quadratic discriminant analysis (QDA)) under outdoor experiments. The experimental results demonstrate that the average recognition accuracy of this method reaches 96.13% under variable speed conditions, with an average accuracy of 98.06% under slow walking conditions, surpassing the performance of the above four algorithms.
期刊介绍:
The International Journal of Intelligent Robotics and Applications (IJIRA) fosters the dissemination of new discoveries and novel technologies that advance developments in robotics and their broad applications. This journal provides a publication and communication platform for all robotics topics, from the theoretical fundamentals and technological advances to various applications including manufacturing, space vehicles, biomedical systems and automobiles, data-storage devices, healthcare systems, home appliances, and intelligent highways. IJIRA welcomes contributions from researchers, professionals and industrial practitioners. It publishes original, high-quality and previously unpublished research papers, brief reports, and critical reviews. Specific areas of interest include, but are not limited to:Advanced actuators and sensorsCollective and social robots Computing, communication and controlDesign, modeling and prototypingHuman and robot interactionMachine learning and intelligenceMobile robots and intelligent autonomous systemsMulti-sensor fusion and perceptionPlanning, navigation and localizationRobot intelligence, learning and linguisticsRobotic vision, recognition and reconstructionBio-mechatronics and roboticsCloud and Swarm roboticsCognitive and neuro roboticsExploration and security roboticsHealthcare, medical and assistive roboticsRobotics for intelligent manufacturingService, social and entertainment roboticsSpace and underwater robotsNovel and emerging applications