利用广义补全构建低阶塔克张量近似值

Pub Date : 2024-04-08 DOI:10.1515/rnam-2024-0010
Sergey Petrov
{"title":"利用广义补全构建低阶塔克张量近似值","authors":"Sergey Petrov","doi":"10.1515/rnam-2024-0010","DOIUrl":null,"url":null,"abstract":"The projected gradient method for matrix completion is generalized towards the higher-dimensional case of low-rank Tucker tensors. It is shown that an operation order rearrangement in the common projected gradient approach provides a complexity improvement. An even better algorithm complexity can be obtained by replacing the completion operator by a general operator that satisfies restricted isometry property; however, such a replacement transforms the completion algorithm into an approximation algorithm.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing low-rank Tucker tensor approximations using generalized completion\",\"authors\":\"Sergey Petrov\",\"doi\":\"10.1515/rnam-2024-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The projected gradient method for matrix completion is generalized towards the higher-dimensional case of low-rank Tucker tensors. It is shown that an operation order rearrangement in the common projected gradient approach provides a complexity improvement. An even better algorithm complexity can be obtained by replacing the completion operator by a general operator that satisfies restricted isometry property; however, such a replacement transforms the completion algorithm into an approximation algorithm.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/rnam-2024-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2024-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对低阶塔克张量的高维情况,对矩阵补全的投影梯度法进行了推广。结果表明,普通投影梯度法中的运算顺序重排可以提高复杂度。用一个满足受限等距性质的一般算子代替补全算子,可以获得更好的算法复杂度;但是,这种替换会将补全算法转化为近似算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Constructing low-rank Tucker tensor approximations using generalized completion
The projected gradient method for matrix completion is generalized towards the higher-dimensional case of low-rank Tucker tensors. It is shown that an operation order rearrangement in the common projected gradient approach provides a complexity improvement. An even better algorithm complexity can be obtained by replacing the completion operator by a general operator that satisfies restricted isometry property; however, such a replacement transforms the completion algorithm into an approximation algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信