{"title":"通过双延迟深度确定性策略梯度(TD3)对 PMSG 风机控制进行深度强化学习","authors":"Darkhan Zholtayev, Matteo Rubagotti, Ton Duc Do","doi":"10.1002/oca.3129","DOIUrl":null,"url":null,"abstract":"This article proposes the use of a deep reinforcement learning method—and precisely a variant of the deep deterministic policy gradient (DDPG) method known as twin delayed DDPG, or TD3—for maximum power point tracking in wind energy conversion systems that use permanent magnet synchronous generators (PMSGs). An overview of the TD3 algorithm is provided, together with a detailed description of its implementation and training for the considered application. Simulation results are provided, also including a comparison with a model‐based control method based on feedback linearization and linear‐quadratic regulation. The proposed TD3‐based controller achieves a satisfactory control performance and is more robust to PMSG parameter variations as compared to the presented model‐based method. To the best of the authors' knowledge, this article presents for the first time an approach for generating both speed and current control loops using DRL for wind energy conversion systems.","PeriodicalId":501055,"journal":{"name":"Optimal Control Applications and Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep reinforcement learning for PMSG wind turbine control via twin delayed deep deterministic policy gradient (TD3)\",\"authors\":\"Darkhan Zholtayev, Matteo Rubagotti, Ton Duc Do\",\"doi\":\"10.1002/oca.3129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes the use of a deep reinforcement learning method—and precisely a variant of the deep deterministic policy gradient (DDPG) method known as twin delayed DDPG, or TD3—for maximum power point tracking in wind energy conversion systems that use permanent magnet synchronous generators (PMSGs). An overview of the TD3 algorithm is provided, together with a detailed description of its implementation and training for the considered application. Simulation results are provided, also including a comparison with a model‐based control method based on feedback linearization and linear‐quadratic regulation. The proposed TD3‐based controller achieves a satisfactory control performance and is more robust to PMSG parameter variations as compared to the presented model‐based method. To the best of the authors' knowledge, this article presents for the first time an approach for generating both speed and current control loops using DRL for wind energy conversion systems.\",\"PeriodicalId\":501055,\"journal\":{\"name\":\"Optimal Control Applications and Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimal Control Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/oca.3129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep reinforcement learning for PMSG wind turbine control via twin delayed deep deterministic policy gradient (TD3)
This article proposes the use of a deep reinforcement learning method—and precisely a variant of the deep deterministic policy gradient (DDPG) method known as twin delayed DDPG, or TD3—for maximum power point tracking in wind energy conversion systems that use permanent magnet synchronous generators (PMSGs). An overview of the TD3 algorithm is provided, together with a detailed description of its implementation and training for the considered application. Simulation results are provided, also including a comparison with a model‐based control method based on feedback linearization and linear‐quadratic regulation. The proposed TD3‐based controller achieves a satisfactory control performance and is more robust to PMSG parameter variations as compared to the presented model‐based method. To the best of the authors' knowledge, this article presents for the first time an approach for generating both speed and current control loops using DRL for wind energy conversion systems.