{"title":"超越适应性:整个生命周期中的选择为种群状态提供的信息","authors":"Eric Smith","doi":"10.1016/j.tpb.2024.04.003","DOIUrl":null,"url":null,"abstract":"<div><p>We approach the questions, what part of evolutionary change results from selection, and what is the adaptive information flow into a population undergoing selection, as a problem of quantifying the divergence of typical trajectories realized under selection from the expected dynamics of their counterparts under a null stochastic-process model representing the absence of selection. This approach starts with a formulation of adaptation in terms of information and from that identifies selection from the genetic parameters that generate information flow; it is the reverse of a historical approach that defines selection in terms of fitness, and then identifies adaptive characters as those amplified in relative frequency by fitness. Adaptive information is a relative entropy on distributions of histories computed directly from the generators of stochastic evolutionary population processes, which in large population limits can be approximated by its leading exponential dependence as a large-deviation function. We study a particular class of generators that represent the genetic dependence of explicit transitions around reproductive cycles in terms of stoichiometry, familiar from chemical reaction networks. Following Smith (2023), which showed that partitioning evolutionary events among genetically distinct realizations of lifecycles yields a more consistent causal analysis through the Price equation than the construction from units of selection and fitness, here we show that it likewise yields more complete evolutionary information measures.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000364/pdfft?md5=ab76042f06b1a1f92eb4084df971bd79&pid=1-s2.0-S0040580924000364-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Beyond fitness: The information imparted in population states by selection throughout lifecycles\",\"authors\":\"Eric Smith\",\"doi\":\"10.1016/j.tpb.2024.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We approach the questions, what part of evolutionary change results from selection, and what is the adaptive information flow into a population undergoing selection, as a problem of quantifying the divergence of typical trajectories realized under selection from the expected dynamics of their counterparts under a null stochastic-process model representing the absence of selection. This approach starts with a formulation of adaptation in terms of information and from that identifies selection from the genetic parameters that generate information flow; it is the reverse of a historical approach that defines selection in terms of fitness, and then identifies adaptive characters as those amplified in relative frequency by fitness. Adaptive information is a relative entropy on distributions of histories computed directly from the generators of stochastic evolutionary population processes, which in large population limits can be approximated by its leading exponential dependence as a large-deviation function. We study a particular class of generators that represent the genetic dependence of explicit transitions around reproductive cycles in terms of stoichiometry, familiar from chemical reaction networks. Following Smith (2023), which showed that partitioning evolutionary events among genetically distinct realizations of lifecycles yields a more consistent causal analysis through the Price equation than the construction from units of selection and fitness, here we show that it likewise yields more complete evolutionary information measures.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0040580924000364/pdfft?md5=ab76042f06b1a1f92eb4084df971bd79&pid=1-s2.0-S0040580924000364-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040580924000364\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040580924000364","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Beyond fitness: The information imparted in population states by selection throughout lifecycles
We approach the questions, what part of evolutionary change results from selection, and what is the adaptive information flow into a population undergoing selection, as a problem of quantifying the divergence of typical trajectories realized under selection from the expected dynamics of their counterparts under a null stochastic-process model representing the absence of selection. This approach starts with a formulation of adaptation in terms of information and from that identifies selection from the genetic parameters that generate information flow; it is the reverse of a historical approach that defines selection in terms of fitness, and then identifies adaptive characters as those amplified in relative frequency by fitness. Adaptive information is a relative entropy on distributions of histories computed directly from the generators of stochastic evolutionary population processes, which in large population limits can be approximated by its leading exponential dependence as a large-deviation function. We study a particular class of generators that represent the genetic dependence of explicit transitions around reproductive cycles in terms of stoichiometry, familiar from chemical reaction networks. Following Smith (2023), which showed that partitioning evolutionary events among genetically distinct realizations of lifecycles yields a more consistent causal analysis through the Price equation than the construction from units of selection and fitness, here we show that it likewise yields more complete evolutionary information measures.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.