利用测量数据对抛物线优化控制进行有限元误差估计

IF 1.4 Q2 MATHEMATICS, APPLIED
Xun Yang, Xianbing Luo
{"title":"利用测量数据对抛物线优化控制进行有限元误差估计","authors":"Xun Yang,&nbsp;Xianbing Luo","doi":"10.1016/j.rinam.2024.100456","DOIUrl":null,"url":null,"abstract":"<div><p>A prior error estimate is considered for the finite element (FE) approximation of a parabolic optimal control (POC) with spatial measurement data. We use conforming linear finite element to discretize the space for the state, piecewise constant for the control, and Euler method to discretize the time. The convergence order <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn><mo>−</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><msup><mrow><mi>k</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow></mrow></math></span> in the <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>,</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>-norm of state variable, co-state, and control variable are obtained. To validate our theory, numerical tests are executed.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100456"},"PeriodicalIF":1.4000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000268/pdfft?md5=ad43a30f2f725635956ac9b65de5891f&pid=1-s2.0-S2590037424000268-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Finite element error estimation for parabolic optimal control with measurement data\",\"authors\":\"Xun Yang,&nbsp;Xianbing Luo\",\"doi\":\"10.1016/j.rinam.2024.100456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A prior error estimate is considered for the finite element (FE) approximation of a parabolic optimal control (POC) with spatial measurement data. We use conforming linear finite element to discretize the space for the state, piecewise constant for the control, and Euler method to discretize the time. The convergence order <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn><mo>−</mo><mfrac><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><msup><mrow><mi>k</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow></mrow></math></span> in the <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>,</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>-norm of state variable, co-state, and control variable are obtained. To validate our theory, numerical tests are executed.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"22 \",\"pages\":\"Article 100456\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000268/pdfft?md5=ad43a30f2f725635956ac9b65de5891f&pid=1-s2.0-S2590037424000268-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了利用空间测量数据对抛物线最优控制(POC)进行有限元近似的先验误差估计。我们使用符合线性有限元对状态进行空间离散,对控制进行片断常数离散,并使用欧拉法对时间进行离散。我们得到了状态变量、共状态和控制变量在 L2(0,T,L2(Ω)) 规范下的收敛阶数为 O(h2-s2+k12)。为了验证我们的理论,我们进行了数值测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite element error estimation for parabolic optimal control with measurement data

A prior error estimate is considered for the finite element (FE) approximation of a parabolic optimal control (POC) with spatial measurement data. We use conforming linear finite element to discretize the space for the state, piecewise constant for the control, and Euler method to discretize the time. The convergence order O(h2s2+k12) in the L2(0,T,L2(Ω))-norm of state variable, co-state, and control variable are obtained. To validate our theory, numerical tests are executed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信