利用新的综合数据集 BangDSA 和新的特征指标 skipBangla-BERT 对孟加拉语进行情感分析

Md. Shymon Islam, Kazi Masudul Alam
{"title":"利用新的综合数据集 BangDSA 和新的特征指标 skipBangla-BERT 对孟加拉语进行情感分析","authors":"Md. Shymon Islam,&nbsp;Kazi Masudul Alam","doi":"10.1016/j.nlp.2024.100069","DOIUrl":null,"url":null,"abstract":"<div><p>In this modern technologically advanced world, Sentiment Analysis (SA) is a very important topic in every language due to its various trendy applications. But SA in Bangla language is still in a dearth level. This work focuses on examining different hybrid feature extraction techniques and learning algorithms on <strong>Bang</strong>la <strong>D</strong>ocument level <strong>S</strong>entiment <strong>A</strong>nalysis using a new comprehensive dataset (BangDSA) of 203,493 comments collected from various microblogging sites. The proposed BangDSA dataset approximately follows the Zipf’s law, covering 32.84% function words with a vocabulary growth rate of 0.053, tagged both on 15 and 3 categories. In this study, we have implemented 21 different hybrid feature extraction methods including Bag of Words (BOW), N-gram, TF-IDF, TF-IDF-ICF, Word2Vec, FastText, GloVe, Bangla-BERT etc with CBOW and Skipgram mechanisms. The proposed novel method (Bangla-BERT+Skipgram), skipBangla-BERT outperforms all other feature extraction techniques in machine leaning (ML), ensemble learning (EL) and deep learning (DL) approaches. Among the built models from ML, EL and DL domains the hybrid method CNN-BiLSTM surpasses the others. The best acquired accuracy for the CNN-BiLSTM model is 90.24% in 15 categories and 95.71% in 3 categories. Friedman test has been performed on the obtained results to observe the statistical significance. For both real 15 and 3 categories, the results of the statistical test are significant.</p></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"7 ","pages":"Article 100069"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949719124000177/pdfft?md5=2a4b5d5dc62f48201e142e0cf3b9cb09&pid=1-s2.0-S2949719124000177-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sentiment analysis of Bangla language using a new comprehensive dataset BangDSA and the novel feature metric skipBangla-BERT\",\"authors\":\"Md. Shymon Islam,&nbsp;Kazi Masudul Alam\",\"doi\":\"10.1016/j.nlp.2024.100069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this modern technologically advanced world, Sentiment Analysis (SA) is a very important topic in every language due to its various trendy applications. But SA in Bangla language is still in a dearth level. This work focuses on examining different hybrid feature extraction techniques and learning algorithms on <strong>Bang</strong>la <strong>D</strong>ocument level <strong>S</strong>entiment <strong>A</strong>nalysis using a new comprehensive dataset (BangDSA) of 203,493 comments collected from various microblogging sites. The proposed BangDSA dataset approximately follows the Zipf’s law, covering 32.84% function words with a vocabulary growth rate of 0.053, tagged both on 15 and 3 categories. In this study, we have implemented 21 different hybrid feature extraction methods including Bag of Words (BOW), N-gram, TF-IDF, TF-IDF-ICF, Word2Vec, FastText, GloVe, Bangla-BERT etc with CBOW and Skipgram mechanisms. The proposed novel method (Bangla-BERT+Skipgram), skipBangla-BERT outperforms all other feature extraction techniques in machine leaning (ML), ensemble learning (EL) and deep learning (DL) approaches. Among the built models from ML, EL and DL domains the hybrid method CNN-BiLSTM surpasses the others. The best acquired accuracy for the CNN-BiLSTM model is 90.24% in 15 categories and 95.71% in 3 categories. Friedman test has been performed on the obtained results to observe the statistical significance. For both real 15 and 3 categories, the results of the statistical test are significant.</p></div>\",\"PeriodicalId\":100944,\"journal\":{\"name\":\"Natural Language Processing Journal\",\"volume\":\"7 \",\"pages\":\"Article 100069\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949719124000177/pdfft?md5=2a4b5d5dc62f48201e142e0cf3b9cb09&pid=1-s2.0-S2949719124000177-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Processing Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949719124000177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719124000177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这个科技发达的现代社会,情感分析(Sentiment Analysis,SA)因其各种时髦的应用而成为每种语言中一个非常重要的话题。但在孟加拉语中,情感分析仍处于匮乏阶段。这项工作的重点是利用一个新的综合数据集(BangDSA),对不同的混合特征提取技术和学习算法进行孟加拉语文档级情感分析,该数据集包含从各种微博网站收集的 203,493 条评论。提议的 BangDSA 数据集大致遵循 Zipf 定律,涵盖 32.84% 的功能词,词汇增长率为 0.053,同时标记了 15 个和 3 个类别。在这项研究中,我们采用了 21 种不同的混合特征提取方法,包括词袋(BOW)、N-gram、TF-IDF、TF-IDF-ICF、Word2Vec、FastText、GloVe、Bangla-BERT 等,以及 CBOW 和 Skipgram 机制。所提出的新方法(Bangla-BERT+Skipgram)、skipBangla-BERT 优于机器精益(ML)、集合学习(EL)和深度学习(DL)方法中的所有其他特征提取技术。在 ML、EL 和 DL 领域建立的模型中,混合方法 CNN-BiLSTM 优于其他方法。在 15 个类别中,CNN-BiLSTM 模型的最佳准确率为 90.24%,在 3 个类别中为 95.71%。对所获得的结果进行了弗里德曼检验,以观察统计意义。在实际的 15 个类别和 3 个类别中,统计检验的结果都是显著的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment analysis of Bangla language using a new comprehensive dataset BangDSA and the novel feature metric skipBangla-BERT

In this modern technologically advanced world, Sentiment Analysis (SA) is a very important topic in every language due to its various trendy applications. But SA in Bangla language is still in a dearth level. This work focuses on examining different hybrid feature extraction techniques and learning algorithms on Bangla Document level Sentiment Analysis using a new comprehensive dataset (BangDSA) of 203,493 comments collected from various microblogging sites. The proposed BangDSA dataset approximately follows the Zipf’s law, covering 32.84% function words with a vocabulary growth rate of 0.053, tagged both on 15 and 3 categories. In this study, we have implemented 21 different hybrid feature extraction methods including Bag of Words (BOW), N-gram, TF-IDF, TF-IDF-ICF, Word2Vec, FastText, GloVe, Bangla-BERT etc with CBOW and Skipgram mechanisms. The proposed novel method (Bangla-BERT+Skipgram), skipBangla-BERT outperforms all other feature extraction techniques in machine leaning (ML), ensemble learning (EL) and deep learning (DL) approaches. Among the built models from ML, EL and DL domains the hybrid method CNN-BiLSTM surpasses the others. The best acquired accuracy for the CNN-BiLSTM model is 90.24% in 15 categories and 95.71% in 3 categories. Friedman test has been performed on the obtained results to observe the statistical significance. For both real 15 and 3 categories, the results of the statistical test are significant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信