具有任意表面位置的全息多输入多输出通信:近场 LoS 信道模型和容量限制

Tierui Gong;Li Wei;Chongwen Huang;Zhijia Yang;Jiguang He;Mérouane Debbah;Chau Yuen
{"title":"具有任意表面位置的全息多输入多输出通信:近场 LoS 信道模型和容量限制","authors":"Tierui Gong;Li Wei;Chongwen Huang;Zhijia Yang;Jiguang He;Mérouane Debbah;Chau Yuen","doi":"10.1109/JSAC.2024.3389126","DOIUrl":null,"url":null,"abstract":"Envisioned as one of the most promising technologies, holographic multiple-input multiple-output (H-MIMO) recently attracts notable research interests for its great potential in expanding wireless possibilities and achieving fundamental wireless limits. Empowered by the nearly continuous, large and energy-efficient surfaces with powerful electromagnetic (EM) wave control capabilities, H-MIMO opens up the opportunity for signal processing in a more fundamental EM-domain, paving the way for realizing holographic imaging level communications in supporting the extremely high spectral efficiency and energy efficiency in future networks. In this article, we propose a generalized EM-domain near-field channel modeling and study its capacity limit of point-to-point H-MIMO systems that equips arbitrarily placed surfaces in a line-of-sight (LoS) environment. Two effective and computational-efficient channel models are established from their integral counterpart, where one is with a sophisticated formula but showcases more accurate, and another is concise with a slight precision sacrifice. Furthermore, we unveil the capacity limit using our channel model, and derive a tight upper bound based upon an elaborately built analytical framework. Our result reveals that the capacity limit grows logarithmically with the product of transmit element area, receive element area, and the combined effects of \n<inline-formula> <tex-math>$1/{{d}_{mn}^{2}}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$1/{{d}_{mn}^{4}}$ </tex-math></inline-formula>\n, and \n<inline-formula> <tex-math>$1/{{d}_{mn}^{6}}$ </tex-math></inline-formula>\n over all transmit and receive antenna elements, where \n<inline-formula> <tex-math>$d_{mn}$ </tex-math></inline-formula>\n indicates the distance between each transmit element n and receive element m. Particularly, \n<inline-formula> <tex-math>$1/{{d}_{mn}^{6}}$ </tex-math></inline-formula>\n dominates in the near-field region whereas \n<inline-formula> <tex-math>$1/{{d}_{mn}^{2}}$ </tex-math></inline-formula>\n dominates in the far-field region. Numerical evaluations validate the effectiveness of our channel models, and showcase the slight disparity between the upper bound and the exact capacity, which is beneficial for predicting practical system performance.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holographic MIMO Communications With Arbitrary Surface Placements: Near-Field LoS Channel Model and Capacity Limit\",\"authors\":\"Tierui Gong;Li Wei;Chongwen Huang;Zhijia Yang;Jiguang He;Mérouane Debbah;Chau Yuen\",\"doi\":\"10.1109/JSAC.2024.3389126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Envisioned as one of the most promising technologies, holographic multiple-input multiple-output (H-MIMO) recently attracts notable research interests for its great potential in expanding wireless possibilities and achieving fundamental wireless limits. Empowered by the nearly continuous, large and energy-efficient surfaces with powerful electromagnetic (EM) wave control capabilities, H-MIMO opens up the opportunity for signal processing in a more fundamental EM-domain, paving the way for realizing holographic imaging level communications in supporting the extremely high spectral efficiency and energy efficiency in future networks. In this article, we propose a generalized EM-domain near-field channel modeling and study its capacity limit of point-to-point H-MIMO systems that equips arbitrarily placed surfaces in a line-of-sight (LoS) environment. Two effective and computational-efficient channel models are established from their integral counterpart, where one is with a sophisticated formula but showcases more accurate, and another is concise with a slight precision sacrifice. Furthermore, we unveil the capacity limit using our channel model, and derive a tight upper bound based upon an elaborately built analytical framework. Our result reveals that the capacity limit grows logarithmically with the product of transmit element area, receive element area, and the combined effects of \\n<inline-formula> <tex-math>$1/{{d}_{mn}^{2}}$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>$1/{{d}_{mn}^{4}}$ </tex-math></inline-formula>\\n, and \\n<inline-formula> <tex-math>$1/{{d}_{mn}^{6}}$ </tex-math></inline-formula>\\n over all transmit and receive antenna elements, where \\n<inline-formula> <tex-math>$d_{mn}$ </tex-math></inline-formula>\\n indicates the distance between each transmit element n and receive element m. Particularly, \\n<inline-formula> <tex-math>$1/{{d}_{mn}^{6}}$ </tex-math></inline-formula>\\n dominates in the near-field region whereas \\n<inline-formula> <tex-math>$1/{{d}_{mn}^{2}}$ </tex-math></inline-formula>\\n dominates in the far-field region. Numerical evaluations validate the effectiveness of our channel models, and showcase the slight disparity between the upper bound and the exact capacity, which is beneficial for predicting practical system performance.\",\"PeriodicalId\":73294,\"journal\":{\"name\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10500751/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10500751/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全息多输入多输出(H-MIMO)被认为是最有前途的技术之一,最近因其在扩展无线可能性和实现基本无线极限方面的巨大潜力而引起了广泛的研究兴趣。全息多输入多输出(H-MIMO)具有近乎连续、大面积和高能效的表面,并具有强大的电磁波控制能力,这为在更基本的电磁领域进行信号处理提供了机会,为实现全息成像级通信铺平了道路,从而支持未来网络中极高的频谱效率和能效。在本文中,我们提出了一种广义的电磁域近场信道建模,并研究了其在视距(LoS)环境中装备任意放置表面的点对点 H-MIMO 系统的容量极限。从积分对应模型出发,我们建立了两个有效且计算效率高的信道模型,其中一个采用复杂的公式,但精度更高;另一个简洁明了,但精度略有降低。此外,我们还利用信道模型揭示了容量极限,并基于精心构建的分析框架推导出一个严密的上限。我们的结果表明,在所有发射和接收天线单元上,容量极限随发射单元面积、接收单元面积和 1/{{d}_{mn}^{2}}$ 、1/{{d}_{mn}^{4}}$ 和 1/{{d}_{mn}^{6}}$ 的乘积呈对数增长,其中 $d_{mn}$ 表示每个发射单元 n 和接收单元 m 之间的距离。其中,$1/{{d}_{mn}^{6}}$ 在近场区域占主导地位,而$1/{{d}_{mn}^{2}}$ 在远场区域占主导地位。数值评估验证了我们信道模型的有效性,并展示了上限与精确容量之间的微小差距,这有利于预测实际系统性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Holographic MIMO Communications With Arbitrary Surface Placements: Near-Field LoS Channel Model and Capacity Limit
Envisioned as one of the most promising technologies, holographic multiple-input multiple-output (H-MIMO) recently attracts notable research interests for its great potential in expanding wireless possibilities and achieving fundamental wireless limits. Empowered by the nearly continuous, large and energy-efficient surfaces with powerful electromagnetic (EM) wave control capabilities, H-MIMO opens up the opportunity for signal processing in a more fundamental EM-domain, paving the way for realizing holographic imaging level communications in supporting the extremely high spectral efficiency and energy efficiency in future networks. In this article, we propose a generalized EM-domain near-field channel modeling and study its capacity limit of point-to-point H-MIMO systems that equips arbitrarily placed surfaces in a line-of-sight (LoS) environment. Two effective and computational-efficient channel models are established from their integral counterpart, where one is with a sophisticated formula but showcases more accurate, and another is concise with a slight precision sacrifice. Furthermore, we unveil the capacity limit using our channel model, and derive a tight upper bound based upon an elaborately built analytical framework. Our result reveals that the capacity limit grows logarithmically with the product of transmit element area, receive element area, and the combined effects of $1/{{d}_{mn}^{2}}$ , $1/{{d}_{mn}^{4}}$ , and $1/{{d}_{mn}^{6}}$ over all transmit and receive antenna elements, where $d_{mn}$ indicates the distance between each transmit element n and receive element m. Particularly, $1/{{d}_{mn}^{6}}$ dominates in the near-field region whereas $1/{{d}_{mn}^{2}}$ dominates in the far-field region. Numerical evaluations validate the effectiveness of our channel models, and showcase the slight disparity between the upper bound and the exact capacity, which is beneficial for predicting practical system performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信