需求方管理的黑箱对抗攻击

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Eike Cramer , Ji Gao
{"title":"需求方管理的黑箱对抗攻击","authors":"Eike Cramer ,&nbsp;Ji Gao","doi":"10.1016/j.compchemeng.2024.108681","DOIUrl":null,"url":null,"abstract":"<div><p>Demand side management (DSM) contributes to the industry’s transition to renewables by shifting electricity consumption in time while maintaining feasible operations. Machine learning is promising for DSM with reasonable computation times and electricity price forecasting (EPF), which is paramount to obtaining the necessary data. Increased usage of machine learning makes production processes susceptible to so-called adversarial attacks. This work proposes a black-box attack on DSM and EPF based on an adversarial surrogate model that intercepts and modifies the data flow of load forecasts and forces the DSM to result in financial losses. Notably, adversaries can design the data modifications without knowledge of the EPF model or the DSM optimization model. The results show how barely noticeable modifications of the input data lead to significant deterioration of the decisions by the optimizer. The results implicate a significant threat, as attackers can design and implement powerful attacks without infiltrating secure company networks.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098135424000991/pdfft?md5=1daff4517cd47f17c42632dfccaacd9b&pid=1-s2.0-S0098135424000991-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A black-box adversarial attack on demand side management\",\"authors\":\"Eike Cramer ,&nbsp;Ji Gao\",\"doi\":\"10.1016/j.compchemeng.2024.108681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Demand side management (DSM) contributes to the industry’s transition to renewables by shifting electricity consumption in time while maintaining feasible operations. Machine learning is promising for DSM with reasonable computation times and electricity price forecasting (EPF), which is paramount to obtaining the necessary data. Increased usage of machine learning makes production processes susceptible to so-called adversarial attacks. This work proposes a black-box attack on DSM and EPF based on an adversarial surrogate model that intercepts and modifies the data flow of load forecasts and forces the DSM to result in financial losses. Notably, adversaries can design the data modifications without knowledge of the EPF model or the DSM optimization model. The results show how barely noticeable modifications of the input data lead to significant deterioration of the decisions by the optimizer. The results implicate a significant threat, as attackers can design and implement powerful attacks without infiltrating secure company networks.</p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0098135424000991/pdfft?md5=1daff4517cd47f17c42632dfccaacd9b&pid=1-s2.0-S0098135424000991-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424000991\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424000991","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

需求侧管理(DSM)通过及时转移电力消费,同时保持可行的运营,为工业向可再生能源过渡做出了贡献。机器学习在需求侧管理方面大有可为,其合理的计算时间和电价预测(EPF)对于获取必要的数据至关重要。机器学习应用的增加使得生产流程容易受到所谓的对抗性攻击。本研究提出了一种针对 DSM 和 EPF 的黑盒攻击,该攻击基于一种对抗性代理模型,可拦截和修改负荷预测的数据流,并迫使 DSM 造成经济损失。值得注意的是,对手可以在不知道 EPF 模型或 DSM 优化模型的情况下设计数据修改。研究结果表明,对输入数据进行微不足道的修改,就会导致优化器的决策严重恶化。这些结果揭示了一个重大威胁,因为攻击者可以在不侵入公司安全网络的情况下设计并实施强大的攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A black-box adversarial attack on demand side management

Demand side management (DSM) contributes to the industry’s transition to renewables by shifting electricity consumption in time while maintaining feasible operations. Machine learning is promising for DSM with reasonable computation times and electricity price forecasting (EPF), which is paramount to obtaining the necessary data. Increased usage of machine learning makes production processes susceptible to so-called adversarial attacks. This work proposes a black-box attack on DSM and EPF based on an adversarial surrogate model that intercepts and modifies the data flow of load forecasts and forces the DSM to result in financial losses. Notably, adversaries can design the data modifications without knowledge of the EPF model or the DSM optimization model. The results show how barely noticeable modifications of the input data lead to significant deterioration of the decisions by the optimizer. The results implicate a significant threat, as attackers can design and implement powerful attacks without infiltrating secure company networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信