{"title":"使用生成的文本中心点进行图像聚类","authors":"Daehyeon Kong , Kyeongbo Kong , Suk-Ju Kang","doi":"10.1016/j.image.2024.117128","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, deep neural networks pretrained on large-scale datasets have been used to address data deficiency and achieve better performance through prior knowledge. Contrastive language–image pretraining (CLIP), a vision-language model pretrained on an extensive dataset, achieves better performance in image recognition. In this study, we harness the power of multimodality in image clustering tasks, shifting from a single modality to a multimodal framework using the describability property of image encoder of the CLIP model. The importance of this shift lies in the ability of multimodality to provide richer feature representations. By generating text centroids corresponding to image features, we effectively create a common descriptive language for each cluster. It generates text centroids assigned by the image features and improves the clustering performance. The text centroids use the results generated by using the standard clustering algorithm as a pseudo-label and learn a common description of each cluster. Finally, only text centroids were added when the image features on the same space were assigned to the text centroids, but the clustering performance improved significantly compared to the standard clustering algorithm, especially on complex datasets. When the proposed method is applied, the normalized mutual information score rises by 32% on the Stanford40 dataset and 64% on ImageNet-Dog compared to the <span><math><mi>k</mi></math></span>-means clustering algorithm.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"125 ","pages":"Article 117128"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image clustering using generated text centroids\",\"authors\":\"Daehyeon Kong , Kyeongbo Kong , Suk-Ju Kang\",\"doi\":\"10.1016/j.image.2024.117128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, deep neural networks pretrained on large-scale datasets have been used to address data deficiency and achieve better performance through prior knowledge. Contrastive language–image pretraining (CLIP), a vision-language model pretrained on an extensive dataset, achieves better performance in image recognition. In this study, we harness the power of multimodality in image clustering tasks, shifting from a single modality to a multimodal framework using the describability property of image encoder of the CLIP model. The importance of this shift lies in the ability of multimodality to provide richer feature representations. By generating text centroids corresponding to image features, we effectively create a common descriptive language for each cluster. It generates text centroids assigned by the image features and improves the clustering performance. The text centroids use the results generated by using the standard clustering algorithm as a pseudo-label and learn a common description of each cluster. Finally, only text centroids were added when the image features on the same space were assigned to the text centroids, but the clustering performance improved significantly compared to the standard clustering algorithm, especially on complex datasets. When the proposed method is applied, the normalized mutual information score rises by 32% on the Stanford40 dataset and 64% on ImageNet-Dog compared to the <span><math><mi>k</mi></math></span>-means clustering algorithm.</p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"125 \",\"pages\":\"Article 117128\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596524000298\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524000298","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
In recent years, deep neural networks pretrained on large-scale datasets have been used to address data deficiency and achieve better performance through prior knowledge. Contrastive language–image pretraining (CLIP), a vision-language model pretrained on an extensive dataset, achieves better performance in image recognition. In this study, we harness the power of multimodality in image clustering tasks, shifting from a single modality to a multimodal framework using the describability property of image encoder of the CLIP model. The importance of this shift lies in the ability of multimodality to provide richer feature representations. By generating text centroids corresponding to image features, we effectively create a common descriptive language for each cluster. It generates text centroids assigned by the image features and improves the clustering performance. The text centroids use the results generated by using the standard clustering algorithm as a pseudo-label and learn a common description of each cluster. Finally, only text centroids were added when the image features on the same space were assigned to the text centroids, but the clustering performance improved significantly compared to the standard clustering algorithm, especially on complex datasets. When the proposed method is applied, the normalized mutual information score rises by 32% on the Stanford40 dataset and 64% on ImageNet-Dog compared to the -means clustering algorithm.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.