利用图神经网络增强基于优化的分子设计

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Shiqiang Zhang , Juan S. Campos , Christian Feldmann , Frederik Sandfort , Miriam Mathea , Ruth Misener
{"title":"利用图神经网络增强基于优化的分子设计","authors":"Shiqiang Zhang ,&nbsp;Juan S. Campos ,&nbsp;Christian Feldmann ,&nbsp;Frederik Sandfort ,&nbsp;Miriam Mathea ,&nbsp;Ruth Misener","doi":"10.1016/j.compchemeng.2024.108684","DOIUrl":null,"url":null,"abstract":"<div><p>Computer-aided molecular design (CAMD) studies quantitative structure–property relationships and discovers desired molecules using optimization algorithms. With the emergence of machine learning models, CAMD score functions may be replaced by various surrogates to automatically learn the structure–property relationships. Due to their outstanding performance on graph domains, graph neural networks (GNNs) have recently appeared frequently in CAMD. But using GNNs introduces new optimization challenges. This paper formulates GNNs using mixed-integer programming and then integrates this GNN formulation into the optimization and machine learning toolkit OMLT. To characterize and formulate molecules, we inherit the well-established mixed-integer optimization formulation for CAMD and propose symmetry-breaking constraints to remove symmetric solutions caused by graph isomorphism. In two case studies, we investigate fragment-based odorant molecular design with more practical requirements to test the compatibility and performance of our approaches.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098135424001029/pdfft?md5=03eba5c2041e40bcbb340c9c30405539&pid=1-s2.0-S0098135424001029-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Augmenting optimization-based molecular design with graph neural networks\",\"authors\":\"Shiqiang Zhang ,&nbsp;Juan S. Campos ,&nbsp;Christian Feldmann ,&nbsp;Frederik Sandfort ,&nbsp;Miriam Mathea ,&nbsp;Ruth Misener\",\"doi\":\"10.1016/j.compchemeng.2024.108684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Computer-aided molecular design (CAMD) studies quantitative structure–property relationships and discovers desired molecules using optimization algorithms. With the emergence of machine learning models, CAMD score functions may be replaced by various surrogates to automatically learn the structure–property relationships. Due to their outstanding performance on graph domains, graph neural networks (GNNs) have recently appeared frequently in CAMD. But using GNNs introduces new optimization challenges. This paper formulates GNNs using mixed-integer programming and then integrates this GNN formulation into the optimization and machine learning toolkit OMLT. To characterize and formulate molecules, we inherit the well-established mixed-integer optimization formulation for CAMD and propose symmetry-breaking constraints to remove symmetric solutions caused by graph isomorphism. In two case studies, we investigate fragment-based odorant molecular design with more practical requirements to test the compatibility and performance of our approaches.</p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0098135424001029/pdfft?md5=03eba5c2041e40bcbb340c9c30405539&pid=1-s2.0-S0098135424001029-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424001029\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424001029","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

计算机辅助分子设计(CAMD)研究定量的结构-性能关系,并利用优化算法发现所需的分子。随着机器学习模型的出现,计算机辅助分子设计得分函数可能会被各种代用指标所取代,从而自动学习结构-性能关系。由于图神经网络(GNN)在图域上的出色表现,它最近频繁出现在 CAMD 中。但使用 GNNs 会带来新的优化挑战。本文使用混合整数编程来表述 GNN,然后将这种 GNN 表述集成到优化和机器学习工具包 OMLT 中。为了描述和表述分子,我们继承了 CAMD 成熟的混合整数优化表述,并提出了对称破缺约束,以消除图同构引起的对称解。在两个案例研究中,我们研究了基于片段的气味分子设计,以测试我们方法的兼容性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Augmenting optimization-based molecular design with graph neural networks

Computer-aided molecular design (CAMD) studies quantitative structure–property relationships and discovers desired molecules using optimization algorithms. With the emergence of machine learning models, CAMD score functions may be replaced by various surrogates to automatically learn the structure–property relationships. Due to their outstanding performance on graph domains, graph neural networks (GNNs) have recently appeared frequently in CAMD. But using GNNs introduces new optimization challenges. This paper formulates GNNs using mixed-integer programming and then integrates this GNN formulation into the optimization and machine learning toolkit OMLT. To characterize and formulate molecules, we inherit the well-established mixed-integer optimization formulation for CAMD and propose symmetry-breaking constraints to remove symmetric solutions caused by graph isomorphism. In two case studies, we investigate fragment-based odorant molecular design with more practical requirements to test the compatibility and performance of our approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信