恒定周期数据的支配分裂与阿诺索夫自动形的全局刚性

IF 2.4 1区 数学 Q1 MATHEMATICS
Jonathan DeWitt, Andrey Gogolev
{"title":"恒定周期数据的支配分裂与阿诺索夫自动形的全局刚性","authors":"Jonathan DeWitt, Andrey Gogolev","doi":"10.1007/s00039-024-00680-z","DOIUrl":null,"url":null,"abstract":"<p>We show that a <span>\\(\\operatorname{GL}(d,\\mathbb{R})\\)</span> cocycle over a hyperbolic system with constant periodic data has a dominated splitting whenever the periodic data indicates it should. This implies global periodic data rigidity of generic Anosov automorphisms of <span>\\(\\mathbb{T}^{d}\\)</span>. Further, our approach also works when the periodic data is narrow, that is, sufficiently close to constant. We can show global periodic data rigidity for certain non-linear Anosov diffeomorphisms in a neighborhood of an irreducible Anosov automorphism with simple spectrum.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"37 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dominated Splitting from Constant Periodic Data and Global Rigidity of Anosov Automorphisms\",\"authors\":\"Jonathan DeWitt, Andrey Gogolev\",\"doi\":\"10.1007/s00039-024-00680-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that a <span>\\\\(\\\\operatorname{GL}(d,\\\\mathbb{R})\\\\)</span> cocycle over a hyperbolic system with constant periodic data has a dominated splitting whenever the periodic data indicates it should. This implies global periodic data rigidity of generic Anosov automorphisms of <span>\\\\(\\\\mathbb{T}^{d}\\\\)</span>. Further, our approach also works when the periodic data is narrow, that is, sufficiently close to constant. We can show global periodic data rigidity for certain non-linear Anosov diffeomorphisms in a neighborhood of an irreducible Anosov automorphism with simple spectrum.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00680-z\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00680-z","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,在具有恒定周期数据的双曲系统上的\(operatorname{GL}(d,\mathbb{R})\)循环,只要周期数据表明它应该具有支配分裂。这意味着 \(\mathbb{T}^{d}\)的泛型阿诺索夫自动形的全局周期数据刚性。此外,当周期数据很窄,即足够接近常数时,我们的方法也是有效的。我们可以在具有简单谱的不可还原阿诺索夫自形变的邻域中证明某些非线性阿诺索夫差分自形变的全局周期数据刚性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dominated Splitting from Constant Periodic Data and Global Rigidity of Anosov Automorphisms

We show that a \(\operatorname{GL}(d,\mathbb{R})\) cocycle over a hyperbolic system with constant periodic data has a dominated splitting whenever the periodic data indicates it should. This implies global periodic data rigidity of generic Anosov automorphisms of \(\mathbb{T}^{d}\). Further, our approach also works when the periodic data is narrow, that is, sufficiently close to constant. We can show global periodic data rigidity for certain non-linear Anosov diffeomorphisms in a neighborhood of an irreducible Anosov automorphism with simple spectrum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信