{"title":"恒定周期数据的支配分裂与阿诺索夫自动形的全局刚性","authors":"Jonathan DeWitt, Andrey Gogolev","doi":"10.1007/s00039-024-00680-z","DOIUrl":null,"url":null,"abstract":"<p>We show that a <span>\\(\\operatorname{GL}(d,\\mathbb{R})\\)</span> cocycle over a hyperbolic system with constant periodic data has a dominated splitting whenever the periodic data indicates it should. This implies global periodic data rigidity of generic Anosov automorphisms of <span>\\(\\mathbb{T}^{d}\\)</span>. Further, our approach also works when the periodic data is narrow, that is, sufficiently close to constant. We can show global periodic data rigidity for certain non-linear Anosov diffeomorphisms in a neighborhood of an irreducible Anosov automorphism with simple spectrum.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dominated Splitting from Constant Periodic Data and Global Rigidity of Anosov Automorphisms\",\"authors\":\"Jonathan DeWitt, Andrey Gogolev\",\"doi\":\"10.1007/s00039-024-00680-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that a <span>\\\\(\\\\operatorname{GL}(d,\\\\mathbb{R})\\\\)</span> cocycle over a hyperbolic system with constant periodic data has a dominated splitting whenever the periodic data indicates it should. This implies global periodic data rigidity of generic Anosov automorphisms of <span>\\\\(\\\\mathbb{T}^{d}\\\\)</span>. Further, our approach also works when the periodic data is narrow, that is, sufficiently close to constant. We can show global periodic data rigidity for certain non-linear Anosov diffeomorphisms in a neighborhood of an irreducible Anosov automorphism with simple spectrum.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00680-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00680-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Dominated Splitting from Constant Periodic Data and Global Rigidity of Anosov Automorphisms
We show that a \(\operatorname{GL}(d,\mathbb{R})\) cocycle over a hyperbolic system with constant periodic data has a dominated splitting whenever the periodic data indicates it should. This implies global periodic data rigidity of generic Anosov automorphisms of \(\mathbb{T}^{d}\). Further, our approach also works when the periodic data is narrow, that is, sufficiently close to constant. We can show global periodic data rigidity for certain non-linear Anosov diffeomorphisms in a neighborhood of an irreducible Anosov automorphism with simple spectrum.