二连图中长循环的狄拉克超图相似定理

IF 1 2区 数学 Q1 MATHEMATICS
Alexandr Kostochka, Ruth Luo, Grace McCourt
{"title":"二连图中长循环的狄拉克超图相似定理","authors":"Alexandr Kostochka, Ruth Luo, Grace McCourt","doi":"10.1007/s00493-024-00096-1","DOIUrl":null,"url":null,"abstract":"<p>Dirac proved that each <i>n</i>-vertex 2-connected graph with minimum degree at least <i>k</i> contains a cycle of length at least <span>\\(\\min \\{2k, n\\}\\)</span>. We consider a hypergraph version of this result. A <i>Berge cycle</i> in a hypergraph is an alternating sequence of distinct vertices and edges <span>\\(v_1,e_2,v_2, \\ldots , e_c, v_1\\)</span> such that <span>\\(\\{v_i,v_{i+1}\\} \\subseteq e_i\\)</span> for all <i>i</i> (with indices taken modulo <i>c</i>). We prove that for <span>\\(n \\ge k \\ge r+2 \\ge 5\\)</span>, every 2-connected <i>r</i>-uniform <i>n</i>-vertex hypergraph with minimum degree at least <span>\\({k-1 \\atopwithdelims ()r-1} + 1\\)</span> has a Berge cycle of length at least <span>\\(\\min \\{2k, n\\}\\)</span>. The bound is exact for all <span>\\(k\\ge r+2\\ge 5\\)</span>.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hypergraph Analog of Dirac’s Theorem for Long Cycles in 2-Connected Graphs\",\"authors\":\"Alexandr Kostochka, Ruth Luo, Grace McCourt\",\"doi\":\"10.1007/s00493-024-00096-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dirac proved that each <i>n</i>-vertex 2-connected graph with minimum degree at least <i>k</i> contains a cycle of length at least <span>\\\\(\\\\min \\\\{2k, n\\\\}\\\\)</span>. We consider a hypergraph version of this result. A <i>Berge cycle</i> in a hypergraph is an alternating sequence of distinct vertices and edges <span>\\\\(v_1,e_2,v_2, \\\\ldots , e_c, v_1\\\\)</span> such that <span>\\\\(\\\\{v_i,v_{i+1}\\\\} \\\\subseteq e_i\\\\)</span> for all <i>i</i> (with indices taken modulo <i>c</i>). We prove that for <span>\\\\(n \\\\ge k \\\\ge r+2 \\\\ge 5\\\\)</span>, every 2-connected <i>r</i>-uniform <i>n</i>-vertex hypergraph with minimum degree at least <span>\\\\({k-1 \\\\atopwithdelims ()r-1} + 1\\\\)</span> has a Berge cycle of length at least <span>\\\\(\\\\min \\\\{2k, n\\\\}\\\\)</span>. The bound is exact for all <span>\\\\(k\\\\ge r+2\\\\ge 5\\\\)</span>.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-024-00096-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00096-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

狄拉克证明,每个至少有 k 个最小度的 n 个顶点的 2 连接图至少包含一个长度为 \(\min \{2k, n\}\) 的循环。我们考虑这一结果的超图版本。一个超图中的 Berge 循环是一个不同顶点和边的交替序列 (v_1,e_2,v_2, \ldots , e_c, v_1),这样对于所有 i(索引取模 c)来说,(\{v_i,v_{i+1}} \subseteq e_i/)。我们证明,对于(n \ge k \ge r+2 \ge 5),每个最小度至少为({k-1 \atopwithdelims ()r-1} + 1)的2连接r均匀n顶点超图都有一个长度至少为(\min \{2k, n\}\ )的Berge循环。对于所有的(kge r+2ge 5)来说,这个界限都是精确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Hypergraph Analog of Dirac’s Theorem for Long Cycles in 2-Connected Graphs

A Hypergraph Analog of Dirac’s Theorem for Long Cycles in 2-Connected Graphs

Dirac proved that each n-vertex 2-connected graph with minimum degree at least k contains a cycle of length at least \(\min \{2k, n\}\). We consider a hypergraph version of this result. A Berge cycle in a hypergraph is an alternating sequence of distinct vertices and edges \(v_1,e_2,v_2, \ldots , e_c, v_1\) such that \(\{v_i,v_{i+1}\} \subseteq e_i\) for all i (with indices taken modulo c). We prove that for \(n \ge k \ge r+2 \ge 5\), every 2-connected r-uniform n-vertex hypergraph with minimum degree at least \({k-1 \atopwithdelims ()r-1} + 1\) has a Berge cycle of length at least \(\min \{2k, n\}\). The bound is exact for all \(k\ge r+2\ge 5\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信