平均度大的小子图

IF 1 2区 数学 Q1 MATHEMATICS
Oliver Janzer, Benny Sudakov, István Tomon
{"title":"平均度大的小子图","authors":"Oliver Janzer, Benny Sudakov, István Tomon","doi":"10.1007/s00493-024-00091-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study the fundamental problem of finding small dense subgraphs in a given graph. For a real number <span>\\(s&gt;2\\)</span>, we prove that every graph on <i>n</i> vertices with average degree <span>\\(d\\ge s\\)</span> contains a subgraph of average degree at least <i>s</i> on at most <span>\\(nd^{-\\frac{s}{s-2}}(\\log d)^{O_s(1)}\\)</span> vertices. This is optimal up to the polylogarithmic factor, and resolves a conjecture of Feige and Wagner. In addition, we show that every graph with <i>n</i> vertices and average degree at least <span>\\(n^{1-\\frac{2}{s}+\\varepsilon }\\)</span> contains a subgraph of average degree at least <i>s</i> on <span>\\(O_{\\varepsilon ,s}(1)\\)</span> vertices, which is also optimal up to the constant hidden in the <i>O</i>(.) notation, and resolves a conjecture of Verstraëte.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small Subgraphs with Large Average Degree\",\"authors\":\"Oliver Janzer, Benny Sudakov, István Tomon\",\"doi\":\"10.1007/s00493-024-00091-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we study the fundamental problem of finding small dense subgraphs in a given graph. For a real number <span>\\\\(s&gt;2\\\\)</span>, we prove that every graph on <i>n</i> vertices with average degree <span>\\\\(d\\\\ge s\\\\)</span> contains a subgraph of average degree at least <i>s</i> on at most <span>\\\\(nd^{-\\\\frac{s}{s-2}}(\\\\log d)^{O_s(1)}\\\\)</span> vertices. This is optimal up to the polylogarithmic factor, and resolves a conjecture of Feige and Wagner. In addition, we show that every graph with <i>n</i> vertices and average degree at least <span>\\\\(n^{1-\\\\frac{2}{s}+\\\\varepsilon }\\\\)</span> contains a subgraph of average degree at least <i>s</i> on <span>\\\\(O_{\\\\varepsilon ,s}(1)\\\\)</span> vertices, which is also optimal up to the constant hidden in the <i>O</i>(.) notation, and resolves a conjecture of Verstraëte.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-024-00091-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00091-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了在给定图中寻找小密集子图的基本问题。对于实数 \(s>2\),我们证明平均度为 \(d\ge s\) 的 n 个顶点上的每个图都包含一个平均度至少为 s 的子图,该子图位于最多 \(nd^{-\frac{s}{s-2}}(\log d)^{O_s(1)}\) 个顶点上。这在多对数因子以内都是最优的,并且解决了费格和瓦格纳的一个猜想。此外,我们还证明了每一个有 n 个顶点且平均度至少为 \(n^{1-\frac{2}{s}+\varepsilon }\) 的图都包含一个平均度至少为 s 的子图,该子图位于 \(O_{\varepsilon ,s}(1)\) 顶点上,这也是最优的,直到隐藏在 O(.) 符号中的常数为止,并解决了 Verstraëte 的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Small Subgraphs with Large Average Degree

Small Subgraphs with Large Average Degree

In this paper we study the fundamental problem of finding small dense subgraphs in a given graph. For a real number \(s>2\), we prove that every graph on n vertices with average degree \(d\ge s\) contains a subgraph of average degree at least s on at most \(nd^{-\frac{s}{s-2}}(\log d)^{O_s(1)}\) vertices. This is optimal up to the polylogarithmic factor, and resolves a conjecture of Feige and Wagner. In addition, we show that every graph with n vertices and average degree at least \(n^{1-\frac{2}{s}+\varepsilon }\) contains a subgraph of average degree at least s on \(O_{\varepsilon ,s}(1)\) vertices, which is also optimal up to the constant hidden in the O(.) notation, and resolves a conjecture of Verstraëte.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信