用于双标准优化的显式光谱弗莱彻-里维斯共轭梯度法

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Y Elboulqe, M El Maghri
{"title":"用于双标准优化的显式光谱弗莱彻-里维斯共轭梯度法","authors":"Y Elboulqe, M El Maghri","doi":"10.1093/imanum/drae003","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a spectral Fletcher–Reeves conjugate gradient-like method for solving unconstrained bi-criteria minimization problems without using any technique of scalarization. We suggest an explicit formulae for computing a descent direction common to both criteria. The latter further verifies a sufficient descent property that does not depend on the line search nor on any convexity assumption. After proving the existence of a bi-criteria Armijo-type stepsize, global convergence of the proposed algorithm is established. Finally, some numerical results and comparisons with other methods are reported.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"169 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An explicit spectral Fletcher–Reeves conjugate gradient method for bi-criteria optimization\",\"authors\":\"Y Elboulqe, M El Maghri\",\"doi\":\"10.1093/imanum/drae003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a spectral Fletcher–Reeves conjugate gradient-like method for solving unconstrained bi-criteria minimization problems without using any technique of scalarization. We suggest an explicit formulae for computing a descent direction common to both criteria. The latter further verifies a sufficient descent property that does not depend on the line search nor on any convexity assumption. After proving the existence of a bi-criteria Armijo-type stepsize, global convergence of the proposed algorithm is established. Finally, some numerical results and comparisons with other methods are reported.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"169 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drae003\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae003","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种类似于 Fletcher-Reeves 共轭梯度的光谱方法,用于解决无约束双标准最小化问题,而无需使用任何标量化技术。我们提出了计算两个标准共同下降方向的明确公式。后者进一步验证了一个充分的下降特性,该特性既不依赖于直线搜索,也不依赖于任何凸性假设。在证明了双标准阿米约型步长的存在后,建立了所提算法的全局收敛性。最后,报告了一些数值结果以及与其他方法的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An explicit spectral Fletcher–Reeves conjugate gradient method for bi-criteria optimization
In this paper, we propose a spectral Fletcher–Reeves conjugate gradient-like method for solving unconstrained bi-criteria minimization problems without using any technique of scalarization. We suggest an explicit formulae for computing a descent direction common to both criteria. The latter further verifies a sufficient descent property that does not depend on the line search nor on any convexity assumption. After proving the existence of a bi-criteria Armijo-type stepsize, global convergence of the proposed algorithm is established. Finally, some numerical results and comparisons with other methods are reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信