{"title":"用于双标准优化的显式光谱弗莱彻-里维斯共轭梯度法","authors":"Y Elboulqe, M El Maghri","doi":"10.1093/imanum/drae003","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a spectral Fletcher–Reeves conjugate gradient-like method for solving unconstrained bi-criteria minimization problems without using any technique of scalarization. We suggest an explicit formulae for computing a descent direction common to both criteria. The latter further verifies a sufficient descent property that does not depend on the line search nor on any convexity assumption. After proving the existence of a bi-criteria Armijo-type stepsize, global convergence of the proposed algorithm is established. Finally, some numerical results and comparisons with other methods are reported.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An explicit spectral Fletcher–Reeves conjugate gradient method for bi-criteria optimization\",\"authors\":\"Y Elboulqe, M El Maghri\",\"doi\":\"10.1093/imanum/drae003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a spectral Fletcher–Reeves conjugate gradient-like method for solving unconstrained bi-criteria minimization problems without using any technique of scalarization. We suggest an explicit formulae for computing a descent direction common to both criteria. The latter further verifies a sufficient descent property that does not depend on the line search nor on any convexity assumption. After proving the existence of a bi-criteria Armijo-type stepsize, global convergence of the proposed algorithm is established. Finally, some numerical results and comparisons with other methods are reported.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drae003\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae003","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An explicit spectral Fletcher–Reeves conjugate gradient method for bi-criteria optimization
In this paper, we propose a spectral Fletcher–Reeves conjugate gradient-like method for solving unconstrained bi-criteria minimization problems without using any technique of scalarization. We suggest an explicit formulae for computing a descent direction common to both criteria. The latter further verifies a sufficient descent property that does not depend on the line search nor on any convexity assumption. After proving the existence of a bi-criteria Armijo-type stepsize, global convergence of the proposed algorithm is established. Finally, some numerical results and comparisons with other methods are reported.
期刊介绍:
The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.