数字双胞胎中的人工智能--系统文献综述

IF 2.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Tim Kreuzer, Panagiotis Papapetrou, Jelena Zdravkovic
{"title":"数字双胞胎中的人工智能--系统文献综述","authors":"Tim Kreuzer,&nbsp;Panagiotis Papapetrou,&nbsp;Jelena Zdravkovic","doi":"10.1016/j.datak.2024.102304","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial intelligence and digital twins have become more popular in recent years and have seen usage across different application domains for various scenarios. This study reviews the literature at the intersection of the two fields, where digital twins integrate an artificial intelligence component. We follow a systematic literature review approach, analyzing a total of 149 related studies. In the assessed literature, a variety of problems are approached with an artificial intelligence-integrated digital twin, demonstrating its applicability across different fields. Our findings indicate that there is a lack of in-depth modeling approaches regarding the digital twin, while many articles focus on the implementation and testing of the artificial intelligence component. The majority of publications do not demonstrate a virtual-to-physical connection between the digital twin and the real-world system. Further, only a small portion of studies base their digital twin on real-time data from a physical system, implementing a physical-to-virtual connection.</p></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"151 ","pages":"Article 102304"},"PeriodicalIF":2.7000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169023X24000284/pdfft?md5=7bf249b030dadbb8c82308b54aef035d&pid=1-s2.0-S0169023X24000284-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence in digital twins—A systematic literature review\",\"authors\":\"Tim Kreuzer,&nbsp;Panagiotis Papapetrou,&nbsp;Jelena Zdravkovic\",\"doi\":\"10.1016/j.datak.2024.102304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Artificial intelligence and digital twins have become more popular in recent years and have seen usage across different application domains for various scenarios. This study reviews the literature at the intersection of the two fields, where digital twins integrate an artificial intelligence component. We follow a systematic literature review approach, analyzing a total of 149 related studies. In the assessed literature, a variety of problems are approached with an artificial intelligence-integrated digital twin, demonstrating its applicability across different fields. Our findings indicate that there is a lack of in-depth modeling approaches regarding the digital twin, while many articles focus on the implementation and testing of the artificial intelligence component. The majority of publications do not demonstrate a virtual-to-physical connection between the digital twin and the real-world system. Further, only a small portion of studies base their digital twin on real-time data from a physical system, implementing a physical-to-virtual connection.</p></div>\",\"PeriodicalId\":55184,\"journal\":{\"name\":\"Data & Knowledge Engineering\",\"volume\":\"151 \",\"pages\":\"Article 102304\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0169023X24000284/pdfft?md5=7bf249b030dadbb8c82308b54aef035d&pid=1-s2.0-S0169023X24000284-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data & Knowledge Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169023X24000284\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X24000284","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人工智能和数字孪生变得越来越流行,并在不同应用领域的各种场景中得到广泛应用。本研究回顾了这两个领域交叉点的文献,其中数字双胞胎集成了人工智能组件。我们采用系统的文献综述方法,共分析了 149 项相关研究。在所评估的文献中,各种问题都与集成人工智能的数字孪生相关,表明了其在不同领域的适用性。我们的研究结果表明,目前缺乏有关数字孪生的深入建模方法,而许多文章则侧重于人工智能组件的实施和测试。大多数出版物没有展示数字孪生与现实世界系统之间虚拟到物理的联系。此外,只有一小部分研究将数字孪生基于物理系统的实时数据,实现了物理到虚拟的连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence in digital twins—A systematic literature review

Artificial intelligence and digital twins have become more popular in recent years and have seen usage across different application domains for various scenarios. This study reviews the literature at the intersection of the two fields, where digital twins integrate an artificial intelligence component. We follow a systematic literature review approach, analyzing a total of 149 related studies. In the assessed literature, a variety of problems are approached with an artificial intelligence-integrated digital twin, demonstrating its applicability across different fields. Our findings indicate that there is a lack of in-depth modeling approaches regarding the digital twin, while many articles focus on the implementation and testing of the artificial intelligence component. The majority of publications do not demonstrate a virtual-to-physical connection between the digital twin and the real-world system. Further, only a small portion of studies base their digital twin on real-time data from a physical system, implementing a physical-to-virtual connection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data & Knowledge Engineering
Data & Knowledge Engineering 工程技术-计算机:人工智能
CiteScore
5.00
自引率
0.00%
发文量
66
审稿时长
6 months
期刊介绍: Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信