改进克里彭多夫阿尔法一致系数的推断方法

Pub Date : 2024-04-05 DOI:10.1016/j.jspi.2024.106170
John Hughes
{"title":"改进克里彭多夫阿尔法一致系数的推断方法","authors":"John Hughes","doi":"10.1016/j.jspi.2024.106170","DOIUrl":null,"url":null,"abstract":"<div><p>In this article I recommend a better point estimator for Krippendorff’s Alpha agreement coefficient, and develop a jackknife variance estimator that leads to much better interval estimation than does the customary bootstrap procedure or an alternative bootstrap procedure. Having developed the new methodology, I analyze nominal data previously analyzed by Krippendorff, and two experimentally observed datasets: (1) ordinal data from an imaging study of congenital diaphragmatic hernia, and (2) United States Environmental Protection Agency air pollution data for the Philadelphia, Pennsylvania area. The latter two applications are novel. The proposed methodology is now supported in version 2.0 of my open source R package, <span>krippendorffsalpha</span>, which supports common and user-defined distance functions, and can accommodate any number of units, any number of coders, and missingness. Interval computation can be parallelized.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward improved inference for Krippendorff’s Alpha agreement coefficient\",\"authors\":\"John Hughes\",\"doi\":\"10.1016/j.jspi.2024.106170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article I recommend a better point estimator for Krippendorff’s Alpha agreement coefficient, and develop a jackknife variance estimator that leads to much better interval estimation than does the customary bootstrap procedure or an alternative bootstrap procedure. Having developed the new methodology, I analyze nominal data previously analyzed by Krippendorff, and two experimentally observed datasets: (1) ordinal data from an imaging study of congenital diaphragmatic hernia, and (2) United States Environmental Protection Agency air pollution data for the Philadelphia, Pennsylvania area. The latter two applications are novel. The proposed methodology is now supported in version 2.0 of my open source R package, <span>krippendorffsalpha</span>, which supports common and user-defined distance functions, and can accommodate any number of units, any number of coders, and missingness. Interval computation can be parallelized.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375824000272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我为克里彭多夫的阿尔法一致系数推荐了一个更好的点估计器,并开发了一个杰克刀方差估计器,它能比习惯的自举程序或替代自举程序带来更好的区间估计。在开发出新方法后,我分析了克里彭多夫之前分析过的名义数据,以及两个实验观察数据集:(1) 来自先天性膈疝成像研究的序数数据,以及 (2) 美国环境保护局提供的宾夕法尼亚州费城地区空气污染数据。后两个应用都很新颖。现在,我的开源 R 软件包 krippendorffsalpha 的 2.0 版本支持所提出的方法,该软件包支持常见的和用户定义的距离函数,并能容纳任意数量的单位、任意数量的编码器和缺失。区间计算可以并行化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Toward improved inference for Krippendorff’s Alpha agreement coefficient

分享
查看原文
Toward improved inference for Krippendorff’s Alpha agreement coefficient

In this article I recommend a better point estimator for Krippendorff’s Alpha agreement coefficient, and develop a jackknife variance estimator that leads to much better interval estimation than does the customary bootstrap procedure or an alternative bootstrap procedure. Having developed the new methodology, I analyze nominal data previously analyzed by Krippendorff, and two experimentally observed datasets: (1) ordinal data from an imaging study of congenital diaphragmatic hernia, and (2) United States Environmental Protection Agency air pollution data for the Philadelphia, Pennsylvania area. The latter two applications are novel. The proposed methodology is now supported in version 2.0 of my open source R package, krippendorffsalpha, which supports common and user-defined distance functions, and can accommodate any number of units, any number of coders, and missingness. Interval computation can be parallelized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信