带阻尼的三维不可压缩纳维-斯托克斯方程的渐近行为

IF 1.3 2区 数学 Q1 MATHEMATICS
Fuxian Peng , Xueting Jin , Huan Yu
{"title":"带阻尼的三维不可压缩纳维-斯托克斯方程的渐近行为","authors":"Fuxian Peng ,&nbsp;Xueting Jin ,&nbsp;Huan Yu","doi":"10.1016/j.na.2024.113543","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the 3D incompressible Navier–Stokes equations with damping term <span><math><mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>β</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mrow><mo>(</mo><mi>β</mi><mo>≥</mo><mn>1</mn><mo>)</mo></mrow><mo>.</mo></mrow></math></span> First, by using a different and simple method from Cai and Lei (2010), Jia et al. (2011), Jiang (2012) and Yu and Zheng (2019), for any <span><math><mrow><mi>β</mi><mo>≥</mo><mn>1</mn><mo>,</mo></mrow></math></span> we prove that the weak solutions decay to zero in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> as time tends to infinity; for any <span><math><mrow><mi>β</mi><mo>≥</mo><mn>3</mn><mo>,</mo></mrow></math></span> we derive optimal decay rates of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm of the solutions. Second, we obtain the decay rate with some appropriate space weighted estimates, which is the first result on the 3D damped Navier–Stokes equations to our knowledge.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"244 ","pages":"Article 113543"},"PeriodicalIF":1.3000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic behavior of the 3D incompressible Navier–Stokes equations with damping\",\"authors\":\"Fuxian Peng ,&nbsp;Xueting Jin ,&nbsp;Huan Yu\",\"doi\":\"10.1016/j.na.2024.113543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the 3D incompressible Navier–Stokes equations with damping term <span><math><mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>β</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mrow><mo>(</mo><mi>β</mi><mo>≥</mo><mn>1</mn><mo>)</mo></mrow><mo>.</mo></mrow></math></span> First, by using a different and simple method from Cai and Lei (2010), Jia et al. (2011), Jiang (2012) and Yu and Zheng (2019), for any <span><math><mrow><mi>β</mi><mo>≥</mo><mn>1</mn><mo>,</mo></mrow></math></span> we prove that the weak solutions decay to zero in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> as time tends to infinity; for any <span><math><mrow><mi>β</mi><mo>≥</mo><mn>3</mn><mo>,</mo></mrow></math></span> we derive optimal decay rates of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm of the solutions. Second, we obtain the decay rate with some appropriate space weighted estimates, which is the first result on the 3D damped Navier–Stokes equations to our knowledge.</p></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"244 \",\"pages\":\"Article 113543\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24000622\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24000622","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑带阻尼项|u|β-1u(β≥1)的三维不可压缩纳维-斯托克斯方程。首先,通过使用与蔡和雷(2010)、贾等人(2011)、蒋(2012)和于和正(2019)不同的简单方法,对于任意β≥1,我们证明弱解随着时间趋于无穷大在L2中衰减为零;对于任意β≥3,我们推导出解的L2正的最优衰减率。其次,我们通过一些适当的空间加权估计得到了衰减率,这是我们所知的关于三维阻尼纳维-斯托克斯方程的第一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic behavior of the 3D incompressible Navier–Stokes equations with damping

In this paper, we consider the 3D incompressible Navier–Stokes equations with damping term |u|β1u(β1). First, by using a different and simple method from Cai and Lei (2010), Jia et al. (2011), Jiang (2012) and Yu and Zheng (2019), for any β1, we prove that the weak solutions decay to zero in L2 as time tends to infinity; for any β3, we derive optimal decay rates of the L2-norm of the solutions. Second, we obtain the decay rate with some appropriate space weighted estimates, which is the first result on the 3D damped Navier–Stokes equations to our knowledge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信