C.D. Ruppel , A.D. Skarke , N.C. Miller , M.W. Kidiwela , J. Kluesner , W. Baldwin
{"title":"美国大西洋边缘的甲烷渗漏:最新清单和解释框架","authors":"C.D. Ruppel , A.D. Skarke , N.C. Miller , M.W. Kidiwela , J. Kluesner , W. Baldwin","doi":"10.1016/j.margeo.2024.107287","DOIUrl":null,"url":null,"abstract":"<div><p>Since the discovery of >570 methane flares on the northern U.S. Atlantic margin between Cape Hatteras and Georges Bank in the last decade, the acquisition of thousands of kilometers of additional water column imaging data has provided greater coverage at water depths between the outer continental shelf and the lower continental slope. The additional high-resolution data reveal >1400 gas flares, but the removal of probable duplicates from the combined database of new flares and those recognized in 2014 yields ∼1139 unique sites. Most of these sites occur in clusters of 5 or more seeps, leaving about 275 unique locations (including 47 clusters) for seepage along the margin. As a function of depth, seep distribution is heavily skewed toward the upper continental slope at water depths shallower than 400 m on the southern New England margin and ∼ 550 m in the Mid-Atlantic Bight, with additional seeps clustered at ∼1100 m and just deeper than ∼1400 m in both sectors. Despite little ongoing tectonic deformation or active faulting on this passive margin, a variety of processes driven from below the seafloor (e.g., migration of fluids along faults or through permeable strata, seepage above diapirs or other pre-existing structures) and from above (e.g., erosion, sapping, unroofing) contribute to the development of seeps in different settings along the margin. In addition, the prevalence of seeps on promontories overlooking shelf-breaking canyons may be directly related to the three-dimensional nature of the hydrate stability zone in these locations. As a function of depth, the parts of the slope at the contemporary landward limit of gas hydrate stability are devoid of seeps, and the upper slope zones with the most concentrated seepage were not within the gas hydrate stability zone even during the Last Glacial Maximum. Thus, if the large number of upper slope seeps is at least partially sourced in gas hydrate degradation, the gas emitted at these seeps must have migrated there from greater depths on the continental slope.</p></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"471 ","pages":"Article 107287"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025322724000719/pdfft?md5=2441354f23ff16a75fda18d1a3041bd2&pid=1-s2.0-S0025322724000719-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Methane seeps on the U.S. Atlantic margin: An updated inventory and interpretative framework\",\"authors\":\"C.D. Ruppel , A.D. Skarke , N.C. Miller , M.W. Kidiwela , J. Kluesner , W. Baldwin\",\"doi\":\"10.1016/j.margeo.2024.107287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Since the discovery of >570 methane flares on the northern U.S. Atlantic margin between Cape Hatteras and Georges Bank in the last decade, the acquisition of thousands of kilometers of additional water column imaging data has provided greater coverage at water depths between the outer continental shelf and the lower continental slope. The additional high-resolution data reveal >1400 gas flares, but the removal of probable duplicates from the combined database of new flares and those recognized in 2014 yields ∼1139 unique sites. Most of these sites occur in clusters of 5 or more seeps, leaving about 275 unique locations (including 47 clusters) for seepage along the margin. As a function of depth, seep distribution is heavily skewed toward the upper continental slope at water depths shallower than 400 m on the southern New England margin and ∼ 550 m in the Mid-Atlantic Bight, with additional seeps clustered at ∼1100 m and just deeper than ∼1400 m in both sectors. Despite little ongoing tectonic deformation or active faulting on this passive margin, a variety of processes driven from below the seafloor (e.g., migration of fluids along faults or through permeable strata, seepage above diapirs or other pre-existing structures) and from above (e.g., erosion, sapping, unroofing) contribute to the development of seeps in different settings along the margin. In addition, the prevalence of seeps on promontories overlooking shelf-breaking canyons may be directly related to the three-dimensional nature of the hydrate stability zone in these locations. As a function of depth, the parts of the slope at the contemporary landward limit of gas hydrate stability are devoid of seeps, and the upper slope zones with the most concentrated seepage were not within the gas hydrate stability zone even during the Last Glacial Maximum. Thus, if the large number of upper slope seeps is at least partially sourced in gas hydrate degradation, the gas emitted at these seeps must have migrated there from greater depths on the continental slope.</p></div>\",\"PeriodicalId\":18229,\"journal\":{\"name\":\"Marine Geology\",\"volume\":\"471 \",\"pages\":\"Article 107287\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0025322724000719/pdfft?md5=2441354f23ff16a75fda18d1a3041bd2&pid=1-s2.0-S0025322724000719-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025322724000719\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025322724000719","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Methane seeps on the U.S. Atlantic margin: An updated inventory and interpretative framework
Since the discovery of >570 methane flares on the northern U.S. Atlantic margin between Cape Hatteras and Georges Bank in the last decade, the acquisition of thousands of kilometers of additional water column imaging data has provided greater coverage at water depths between the outer continental shelf and the lower continental slope. The additional high-resolution data reveal >1400 gas flares, but the removal of probable duplicates from the combined database of new flares and those recognized in 2014 yields ∼1139 unique sites. Most of these sites occur in clusters of 5 or more seeps, leaving about 275 unique locations (including 47 clusters) for seepage along the margin. As a function of depth, seep distribution is heavily skewed toward the upper continental slope at water depths shallower than 400 m on the southern New England margin and ∼ 550 m in the Mid-Atlantic Bight, with additional seeps clustered at ∼1100 m and just deeper than ∼1400 m in both sectors. Despite little ongoing tectonic deformation or active faulting on this passive margin, a variety of processes driven from below the seafloor (e.g., migration of fluids along faults or through permeable strata, seepage above diapirs or other pre-existing structures) and from above (e.g., erosion, sapping, unroofing) contribute to the development of seeps in different settings along the margin. In addition, the prevalence of seeps on promontories overlooking shelf-breaking canyons may be directly related to the three-dimensional nature of the hydrate stability zone in these locations. As a function of depth, the parts of the slope at the contemporary landward limit of gas hydrate stability are devoid of seeps, and the upper slope zones with the most concentrated seepage were not within the gas hydrate stability zone even during the Last Glacial Maximum. Thus, if the large number of upper slope seeps is at least partially sourced in gas hydrate degradation, the gas emitted at these seeps must have migrated there from greater depths on the continental slope.
期刊介绍:
Marine Geology is the premier international journal on marine geological processes in the broadest sense. We seek papers that are comprehensive, interdisciplinary and synthetic that will be lasting contributions to the field. Although most papers are based on regional studies, they must demonstrate new findings of international significance. We accept papers on subjects as diverse as seafloor hydrothermal systems, beach dynamics, early diagenesis, microbiological studies in sediments, palaeoclimate studies and geophysical studies of the seabed. We encourage papers that address emerging new fields, for example the influence of anthropogenic processes on coastal/marine geology and coastal/marine geoarchaeology. We insist that the papers are concerned with the marine realm and that they deal with geology: with rocks, sediments, and physical and chemical processes affecting them. Papers should address scientific hypotheses: highly descriptive data compilations or papers that deal only with marine management and risk assessment should be submitted to other journals. Papers on laboratory or modelling studies must demonstrate direct relevance to marine processes or deposits. The primary criteria for acceptance of papers is that the science is of high quality, novel, significant, and of broad international interest.