M. Manjula , E. Thilakraj , P. Sawangtong , K. Kaliraj
{"title":"通过 Faedo-Galerkin 方法分析带有偏离参数的非线性微分方程","authors":"M. Manjula , E. Thilakraj , P. Sawangtong , K. Kaliraj","doi":"10.1016/j.rinam.2024.100452","DOIUrl":null,"url":null,"abstract":"<div><p>This article focuses on the impulsive fractional differential equation (FDE) of Sobolev type with a nonlocal condition. Existence and uniqueness of the approximations are determined via analytic semigroup and fixed point method. Convergence’s approximation is demonstrated by the idea of fractional power of a closed linear operator. Using an approximation procedure, a novel approach is reached. An illustration is used to clarify our key findings.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100452"},"PeriodicalIF":1.4000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000220/pdfft?md5=06f3a022546581dab00d18fcb1040308&pid=1-s2.0-S2590037424000220-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Analysis on nonlinear differential equation with a deviating argument via Faedo–Galerkin method\",\"authors\":\"M. Manjula , E. Thilakraj , P. Sawangtong , K. Kaliraj\",\"doi\":\"10.1016/j.rinam.2024.100452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article focuses on the impulsive fractional differential equation (FDE) of Sobolev type with a nonlocal condition. Existence and uniqueness of the approximations are determined via analytic semigroup and fixed point method. Convergence’s approximation is demonstrated by the idea of fractional power of a closed linear operator. Using an approximation procedure, a novel approach is reached. An illustration is used to clarify our key findings.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"22 \",\"pages\":\"Article 100452\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000220/pdfft?md5=06f3a022546581dab00d18fcb1040308&pid=1-s2.0-S2590037424000220-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Analysis on nonlinear differential equation with a deviating argument via Faedo–Galerkin method
This article focuses on the impulsive fractional differential equation (FDE) of Sobolev type with a nonlocal condition. Existence and uniqueness of the approximations are determined via analytic semigroup and fixed point method. Convergence’s approximation is demonstrated by the idea of fractional power of a closed linear operator. Using an approximation procedure, a novel approach is reached. An illustration is used to clarify our key findings.