拉达克岩床南缘 S 型拉达克花岗岩和黑云母微晶飞地的岩石成因:印度板块与欧亚板块碰撞期间地壳与地幔相互作用的证据

IF 1 4区 地球科学 Q4 GEOSCIENCES, MULTIDISCIPLINARY
Island Arc Pub Date : 2024-04-10 DOI:10.1111/iar.12520
C. Perumalsamy, S. Vijay Anand, R. Nagarajan, Bappa Mukherjee
{"title":"拉达克岩床南缘 S 型拉达克花岗岩和黑云母微晶飞地的岩石成因:印度板块与欧亚板块碰撞期间地壳与地幔相互作用的证据","authors":"C. Perumalsamy,&nbsp;S. Vijay Anand,&nbsp;R. Nagarajan,&nbsp;Bappa Mukherjee","doi":"10.1111/iar.12520","DOIUrl":null,"url":null,"abstract":"<p>The previous studies revealed the I-type Ladakh magmatism in the Andean-type southern margin of the Ladakh batholith (LB) was related to the subduction of the Neotethyan Ocean and India-Eurasia collision. However, LB's S-type granitic magmatism and associated mafic microgranular enclaves (MMEs) are poorly constrained. Here, we present the new data for S-type Ladakh granite (LG) and associated monzodiorite MMEs in the Andean-type orogeny in the southern margin of the Eurasian plate. The low SiO<sub>2</sub> (47.4–53.9 wt%), high K<sub>2</sub>O (1.56–3.21 wt%), Mg<sup>#</sup> (52–65), continental-arc tracer patterns, and slightly depleted to evolved Sr-Nd isotopic composition ((<sup>87</sup>Sr/<sup>86</sup>Sr)i = 0.7047–0.7166; ℇ<sub>Nd</sub> (<i>t</i> = 50 Ma) = (+1.40 to −8.92)) for MME suggest that they were derived from the phlogopite-bearing deep lithospheric mantle-source at a depth of 5.4–10.5 km depth with 810–870°C, 1.4–2.8 kbar, and enriched by sediment-melts addition into the mantle-wedge from subducting Neotethyan Oceanic slab. The mantle-derived ascending hot mafic magma mixing with felsic magma of the ancient northern Indian margin-derived, generates monzodiorite MME by assimilation and magma mixing processes. Plagioclase, amphibole, and biotite chemistry support the magma mixing processes. LG are characterized by high SiO<sub>2</sub> (63.4–75.0 wt%), K<sub>2</sub>O (3.93–5.67 wt%), CaO/Na<sub>2</sub>O ratio of &gt;0.3, differentiation index (90.27–97.46), normative corundum (1.0–2.8), A/CNK values (1.00–1.18), hypersthene (0.7–5.7), and low Al<sub>2</sub>O<sub>3</sub>, MgO, TiO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>. They also exhibit peraluminous, variable tracer elemental abundances, variable (<sup>87</sup>Sr/<sup>86</sup>Sr)i ratios (0.6967–0.7191), and high whole rock ℇ<sub>Nd</sub> (<i>t</i> = 50 Ma) values of −4.15 to −11.92) and ancient two-stage Nd model age of 1160 and 1858 Ma. These features suggest that S-type Ladakh granites were derived from the melting of ancient metagreywacke-dominated metasedimentary rocks of the northern Indian margin by a large amount of mafic magma underplating after subducted Neotethyan slab-rollback. The formation of LG and MMEs related to the Andean-type orogeny in the southern margin of the Eurasian plate.</p>","PeriodicalId":14791,"journal":{"name":"Island Arc","volume":"33 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Petrogenesis of S-type Ladakh granite and mafic microgranular enclaves in the southern margin of Ladakh batholith: An evidence of crust–mantle interaction during the collision between Indian and Eurasian plates\",\"authors\":\"C. Perumalsamy,&nbsp;S. Vijay Anand,&nbsp;R. Nagarajan,&nbsp;Bappa Mukherjee\",\"doi\":\"10.1111/iar.12520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The previous studies revealed the I-type Ladakh magmatism in the Andean-type southern margin of the Ladakh batholith (LB) was related to the subduction of the Neotethyan Ocean and India-Eurasia collision. However, LB's S-type granitic magmatism and associated mafic microgranular enclaves (MMEs) are poorly constrained. Here, we present the new data for S-type Ladakh granite (LG) and associated monzodiorite MMEs in the Andean-type orogeny in the southern margin of the Eurasian plate. The low SiO<sub>2</sub> (47.4–53.9 wt%), high K<sub>2</sub>O (1.56–3.21 wt%), Mg<sup>#</sup> (52–65), continental-arc tracer patterns, and slightly depleted to evolved Sr-Nd isotopic composition ((<sup>87</sup>Sr/<sup>86</sup>Sr)i = 0.7047–0.7166; ℇ<sub>Nd</sub> (<i>t</i> = 50 Ma) = (+1.40 to −8.92)) for MME suggest that they were derived from the phlogopite-bearing deep lithospheric mantle-source at a depth of 5.4–10.5 km depth with 810–870°C, 1.4–2.8 kbar, and enriched by sediment-melts addition into the mantle-wedge from subducting Neotethyan Oceanic slab. The mantle-derived ascending hot mafic magma mixing with felsic magma of the ancient northern Indian margin-derived, generates monzodiorite MME by assimilation and magma mixing processes. Plagioclase, amphibole, and biotite chemistry support the magma mixing processes. LG are characterized by high SiO<sub>2</sub> (63.4–75.0 wt%), K<sub>2</sub>O (3.93–5.67 wt%), CaO/Na<sub>2</sub>O ratio of &gt;0.3, differentiation index (90.27–97.46), normative corundum (1.0–2.8), A/CNK values (1.00–1.18), hypersthene (0.7–5.7), and low Al<sub>2</sub>O<sub>3</sub>, MgO, TiO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>. They also exhibit peraluminous, variable tracer elemental abundances, variable (<sup>87</sup>Sr/<sup>86</sup>Sr)i ratios (0.6967–0.7191), and high whole rock ℇ<sub>Nd</sub> (<i>t</i> = 50 Ma) values of −4.15 to −11.92) and ancient two-stage Nd model age of 1160 and 1858 Ma. These features suggest that S-type Ladakh granites were derived from the melting of ancient metagreywacke-dominated metasedimentary rocks of the northern Indian margin by a large amount of mafic magma underplating after subducted Neotethyan slab-rollback. The formation of LG and MMEs related to the Andean-type orogeny in the southern margin of the Eurasian plate.</p>\",\"PeriodicalId\":14791,\"journal\":{\"name\":\"Island Arc\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Island Arc\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/iar.12520\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Island Arc","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iar.12520","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以往的研究表明,拉达克岩浆岩(Ladakh batholith,LB)安第斯型南缘的 I 型拉达克岩浆岩与新特提安洋俯冲和印度-欧亚大陆碰撞有关。然而,拉达克的S型花岗岩岩浆和相关的岩浆微晶粒飞地(MMEs)却没有得到很好的解释。在此,我们提供了欧亚板块南缘安第斯型造山运动中拉达克S型花岗岩及相关单斜岩MMEs的新数据。MME的低SiO2 (47.4-53.9 wt%)、高K2O (1.56-3.21 wt%)、Mg# (52-65)、大陆弧示踪剂模式以及轻微贫化至演化的Sr-Nd同位素组成((87Sr/86Sr)i = 0.7047-0.7166; ℇNd (t = 50 Ma) = (+1.40 to -8.92))表明,它们来源于5.4-10.5千米深、温度为810-870℃、1.4-2.8千巴的含辉绿岩的深岩石圈地幔源,并经过沉积熔融物的富集,从俯冲的新特提安洋板块进入地幔楔。源于地幔的上升热黑云母岩浆与源于古印度北缘的长英岩浆混合,通过同化和岩浆混合过程生成了单斜闪长岩MME。斜长石、闪长石和斜长石的化学成分支持岩浆混合过程。鳞片闪长岩的特征是高SiO2(63.4-75.0 wt%)、K2O(3.93-5.67 wt%)、CaO/Na2O比值为>0.3、分化指数(90.27-97.46)、标准刚玉(1.0-2.8)、A/CNK值(1.00-1.18)、超铼(0.7-5.7)以及低Al2O3、MgO、TiO2、Fe2O3。它们还表现出过氧化物、可变的示踪元素丰度、可变的(87Sr/86Sr)i比值(0.6967-0.7191)、高的全岩ℇNd(t = 50 Ma)值(-4.15 至 -11.92)以及古老的两阶段 Nd 模型年龄(1160 和 1858 Ma)。这些特征表明,S型拉达克花岗岩是在新特提安板块俯冲回滚后,大量镁质岩浆下溢熔融印度北部边缘以元杂岩为主的元成岩而形成的。与欧亚板块南缘安第斯型造山运动有关的LG和MME的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Petrogenesis of S-type Ladakh granite and mafic microgranular enclaves in the southern margin of Ladakh batholith: An evidence of crust–mantle interaction during the collision between Indian and Eurasian plates

The previous studies revealed the I-type Ladakh magmatism in the Andean-type southern margin of the Ladakh batholith (LB) was related to the subduction of the Neotethyan Ocean and India-Eurasia collision. However, LB's S-type granitic magmatism and associated mafic microgranular enclaves (MMEs) are poorly constrained. Here, we present the new data for S-type Ladakh granite (LG) and associated monzodiorite MMEs in the Andean-type orogeny in the southern margin of the Eurasian plate. The low SiO2 (47.4–53.9 wt%), high K2O (1.56–3.21 wt%), Mg# (52–65), continental-arc tracer patterns, and slightly depleted to evolved Sr-Nd isotopic composition ((87Sr/86Sr)i = 0.7047–0.7166; ℇNd (t = 50 Ma) = (+1.40 to −8.92)) for MME suggest that they were derived from the phlogopite-bearing deep lithospheric mantle-source at a depth of 5.4–10.5 km depth with 810–870°C, 1.4–2.8 kbar, and enriched by sediment-melts addition into the mantle-wedge from subducting Neotethyan Oceanic slab. The mantle-derived ascending hot mafic magma mixing with felsic magma of the ancient northern Indian margin-derived, generates monzodiorite MME by assimilation and magma mixing processes. Plagioclase, amphibole, and biotite chemistry support the magma mixing processes. LG are characterized by high SiO2 (63.4–75.0 wt%), K2O (3.93–5.67 wt%), CaO/Na2O ratio of >0.3, differentiation index (90.27–97.46), normative corundum (1.0–2.8), A/CNK values (1.00–1.18), hypersthene (0.7–5.7), and low Al2O3, MgO, TiO2, Fe2O3. They also exhibit peraluminous, variable tracer elemental abundances, variable (87Sr/86Sr)i ratios (0.6967–0.7191), and high whole rock ℇNd (t = 50 Ma) values of −4.15 to −11.92) and ancient two-stage Nd model age of 1160 and 1858 Ma. These features suggest that S-type Ladakh granites were derived from the melting of ancient metagreywacke-dominated metasedimentary rocks of the northern Indian margin by a large amount of mafic magma underplating after subducted Neotethyan slab-rollback. The formation of LG and MMEs related to the Andean-type orogeny in the southern margin of the Eurasian plate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Island Arc
Island Arc 地学-地球科学综合
CiteScore
2.90
自引率
26.70%
发文量
32
审稿时长
>12 weeks
期刊介绍: Island Arc is the official journal of the Geological Society of Japan. This journal focuses on the structure, dynamics and evolution of convergent plate boundaries, including trenches, volcanic arcs, subducting plates, and both accretionary and collisional orogens in modern and ancient settings. The Journal also opens to other key geological processes and features of broad interest such as oceanic basins, mid-ocean ridges, hot spots, continental cratons, and their surfaces and roots. Papers that discuss the interaction between solid earth, atmosphere, and bodies of water are also welcome. Articles of immediate importance to other researchers, either by virtue of their new data, results or ideas are given priority publication. Island Arc publishes peer-reviewed articles and reviews. Original scientific articles, of a maximum length of 15 printed pages, are published promptly with a standard publication time from submission of 3 months. All articles are peer reviewed by at least two research experts in the field of the submitted paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信