{"title":"利用成像大气切伦科夫望远镜观测到的各向同性背景事件估算大气吸收曲线","authors":"Julian Sitarek , Mario Pecimotika , Natalia Żywucka , Dorota Sobczyńska , Abelardo Moralejo , Dario Hrupec","doi":"10.1016/j.jheap.2024.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>Atmospheric Cherenkov telescopes rely on the Earth's atmosphere as part of the detector. The presence of clouds affects observations and can introduce biases if not corrected for. Correction methods typically require an atmospheric profile, that can be measured with external atmospheric monitoring devices. We present a novel method for measuring the atmospheric profile using the data from Imaging Atmospheric Cherenkov telescopes directly. The method exploits the comparison of average longitudinal distributions of the registered Cherenkov light between clear atmosphere and cloud presence cases. Using Monte Carlo simulations of a subarray of four Large-Sized Telescopes of the upcoming Cherenkov Telescope Array Observatory and a simple cloud model we evaluate the accuracy of the method in determining the basic cloud parameters. We find that the method can reconstruct the transmission of typical clouds with an absolute accuracy of a few per cent. For low-zenith observations, the height of the cloud centre can be reconstructed with a typical accuracy of a few hundred metres, while the geometrical thickness can be accurately reconstructed only if it is ≳3 km. We also evaluate the robustness of the method against the typical systematic uncertainties affecting atmospheric Cherenkov telescopes.</p></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"42 ","pages":"Pages 87-95"},"PeriodicalIF":10.2000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221440482400020X/pdfft?md5=f43746625827350c239bb86aaa6e4160&pid=1-s2.0-S221440482400020X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Estimation of the atmospheric absorption profile with isotropic background events observed by Imaging Atmospheric Cherenkov Telescopes\",\"authors\":\"Julian Sitarek , Mario Pecimotika , Natalia Żywucka , Dorota Sobczyńska , Abelardo Moralejo , Dario Hrupec\",\"doi\":\"10.1016/j.jheap.2024.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Atmospheric Cherenkov telescopes rely on the Earth's atmosphere as part of the detector. The presence of clouds affects observations and can introduce biases if not corrected for. Correction methods typically require an atmospheric profile, that can be measured with external atmospheric monitoring devices. We present a novel method for measuring the atmospheric profile using the data from Imaging Atmospheric Cherenkov telescopes directly. The method exploits the comparison of average longitudinal distributions of the registered Cherenkov light between clear atmosphere and cloud presence cases. Using Monte Carlo simulations of a subarray of four Large-Sized Telescopes of the upcoming Cherenkov Telescope Array Observatory and a simple cloud model we evaluate the accuracy of the method in determining the basic cloud parameters. We find that the method can reconstruct the transmission of typical clouds with an absolute accuracy of a few per cent. For low-zenith observations, the height of the cloud centre can be reconstructed with a typical accuracy of a few hundred metres, while the geometrical thickness can be accurately reconstructed only if it is ≳3 km. We also evaluate the robustness of the method against the typical systematic uncertainties affecting atmospheric Cherenkov telescopes.</p></div>\",\"PeriodicalId\":54265,\"journal\":{\"name\":\"Journal of High Energy Astrophysics\",\"volume\":\"42 \",\"pages\":\"Pages 87-95\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S221440482400020X/pdfft?md5=f43746625827350c239bb86aaa6e4160&pid=1-s2.0-S221440482400020X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221440482400020X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221440482400020X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Estimation of the atmospheric absorption profile with isotropic background events observed by Imaging Atmospheric Cherenkov Telescopes
Atmospheric Cherenkov telescopes rely on the Earth's atmosphere as part of the detector. The presence of clouds affects observations and can introduce biases if not corrected for. Correction methods typically require an atmospheric profile, that can be measured with external atmospheric monitoring devices. We present a novel method for measuring the atmospheric profile using the data from Imaging Atmospheric Cherenkov telescopes directly. The method exploits the comparison of average longitudinal distributions of the registered Cherenkov light between clear atmosphere and cloud presence cases. Using Monte Carlo simulations of a subarray of four Large-Sized Telescopes of the upcoming Cherenkov Telescope Array Observatory and a simple cloud model we evaluate the accuracy of the method in determining the basic cloud parameters. We find that the method can reconstruct the transmission of typical clouds with an absolute accuracy of a few per cent. For low-zenith observations, the height of the cloud centre can be reconstructed with a typical accuracy of a few hundred metres, while the geometrical thickness can be accurately reconstructed only if it is ≳3 km. We also evaluate the robustness of the method against the typical systematic uncertainties affecting atmospheric Cherenkov telescopes.
期刊介绍:
The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.