用于诊断传染病的高效多阶段集合深度学习框架

Rohit Kumar Bondugula, Nitin Sai Bommi, Siba K. Udgata
{"title":"用于诊断传染病的高效多阶段集合深度学习框架","authors":"Rohit Kumar Bondugula,&nbsp;Nitin Sai Bommi,&nbsp;Siba K. Udgata","doi":"10.1016/j.dajour.2024.100458","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents an efficient four-stage ensemble deep learning framework for diagnosing infectious diseases. The model is evaluated on three standard datasets. In our proposed four-stage transfer learning-based deep neural architecture (4s-min-FN), the images pass through four stages, each attempting to classify images as positive. A negative class is confirmed if every stage classifies the image as negative. This model (4S-min-FN) ensures the minimization of false negatives. When the new cases go through a changing scenario, the same model is modified (4S-min-FP) to minimize false positives following the same architecture but with a different transition rule. We use an adaptive threshold setting in the proposed architecture to find a proper trade-off between sensitivity, specificity, and good accuracy. We use well-known pre-trained deep neural architectures like Inception, ResNet-50, DenseNet-121, and MobileNet for the four-stage experimental evaluation and predicted the class, which provided better insights about the condition. The proposed model can perform at par with the existing techniques in terms of accuracy while reducing false positives and negatives depending on the requirement.</p></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"11 ","pages":"Article 100458"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772662224000626/pdfft?md5=22ca4cc78efbb22a2e6adc1424a55d51&pid=1-s2.0-S2772662224000626-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An efficient multi-stage ensemble deep learning framework for diagnosing infectious diseases\",\"authors\":\"Rohit Kumar Bondugula,&nbsp;Nitin Sai Bommi,&nbsp;Siba K. Udgata\",\"doi\":\"10.1016/j.dajour.2024.100458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents an efficient four-stage ensemble deep learning framework for diagnosing infectious diseases. The model is evaluated on three standard datasets. In our proposed four-stage transfer learning-based deep neural architecture (4s-min-FN), the images pass through four stages, each attempting to classify images as positive. A negative class is confirmed if every stage classifies the image as negative. This model (4S-min-FN) ensures the minimization of false negatives. When the new cases go through a changing scenario, the same model is modified (4S-min-FP) to minimize false positives following the same architecture but with a different transition rule. We use an adaptive threshold setting in the proposed architecture to find a proper trade-off between sensitivity, specificity, and good accuracy. We use well-known pre-trained deep neural architectures like Inception, ResNet-50, DenseNet-121, and MobileNet for the four-stage experimental evaluation and predicted the class, which provided better insights about the condition. The proposed model can perform at par with the existing techniques in terms of accuracy while reducing false positives and negatives depending on the requirement.</p></div>\",\"PeriodicalId\":100357,\"journal\":{\"name\":\"Decision Analytics Journal\",\"volume\":\"11 \",\"pages\":\"Article 100458\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772662224000626/pdfft?md5=22ca4cc78efbb22a2e6adc1424a55d51&pid=1-s2.0-S2772662224000626-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Analytics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772662224000626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772662224000626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种用于诊断传染性疾病的高效四阶段集合深度学习框架。该模型在三个标准数据集上进行了评估。在我们提出的基于迁移学习的四阶段深度神经架构(4s-min-FN)中,图像会经过四个阶段,每个阶段都会尝试将图像分类为阳性。如果每个阶段都将图像分类为负类,则确认为负类。这种模型(4S-min-FN)可确保最大限度地减少误判。当新案例经历一个不断变化的场景时,同样的模型会被修改(4S-min-FP),以按照相同的架构但不同的过渡规则将误报率降到最低。我们在提议的架构中使用了自适应阈值设置,以便在灵敏度、特异性和良好的准确性之间找到适当的权衡。我们使用知名的预训练深度神经架构,如 Inception、ResNet-50、DenseNet-121 和 MobileNet,进行四阶段实验评估和预测类别,从而更好地了解病情。所提出的模型在准确性方面可与现有技术媲美,同时还能根据要求减少误报和漏报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient multi-stage ensemble deep learning framework for diagnosing infectious diseases

This study presents an efficient four-stage ensemble deep learning framework for diagnosing infectious diseases. The model is evaluated on three standard datasets. In our proposed four-stage transfer learning-based deep neural architecture (4s-min-FN), the images pass through four stages, each attempting to classify images as positive. A negative class is confirmed if every stage classifies the image as negative. This model (4S-min-FN) ensures the minimization of false negatives. When the new cases go through a changing scenario, the same model is modified (4S-min-FP) to minimize false positives following the same architecture but with a different transition rule. We use an adaptive threshold setting in the proposed architecture to find a proper trade-off between sensitivity, specificity, and good accuracy. We use well-known pre-trained deep neural architectures like Inception, ResNet-50, DenseNet-121, and MobileNet for the four-stage experimental evaluation and predicted the class, which provided better insights about the condition. The proposed model can perform at par with the existing techniques in terms of accuracy while reducing false positives and negatives depending on the requirement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信