Wanying Liang, Pasquale De Meo, Yong Tang, Jia Zhu
{"title":"多模式知识图谱调查:技术与趋势","authors":"Wanying Liang, Pasquale De Meo, Yong Tang, Jia Zhu","doi":"10.1145/3656579","DOIUrl":null,"url":null,"abstract":"<p>In recent years, Knowledge Graphs (KGs) have played a crucial role in the development of advanced knowledge-intensive applications, such as recommender systems and semantic search. However, the human sensory system is inherently multi-modal, as objects around us are often represented by a combination of multiple signals, such as visual and textual. Consequently, Multi-modal Knowledge Graphs (MMKGs), which combine structured knowledge representation with multiple modalities, represent a powerful extension of KGs. Although MMKGs can handle certain types of tasks (e.g., visual query answering) or queries that standard KGs cannot process, and they can effectively tackle some standard problems (e.g., entity alignment), we lack a widely accepted definition of MMKG. In this survey, we provide a rigorous definition of MMKGs along with a classification scheme based on how existing approaches address four fundamental challenges: representation, fusion, alignment, and translation, which are crucial to improving an MMKG. Our classification scheme is flexible and allows for easy incorporation of new approaches, as well as a comparison of two approaches in terms of how they address one of the fundamental challenges mentioned above. As the first comprehensive survey of MMKG, this article aims to inspire and provide a reference for relevant researchers in the field of Artificial Intelligence.</p>","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":null,"pages":null},"PeriodicalIF":23.8000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey of Multi-modal Knowledge Graphs: Technologies and Trends\",\"authors\":\"Wanying Liang, Pasquale De Meo, Yong Tang, Jia Zhu\",\"doi\":\"10.1145/3656579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, Knowledge Graphs (KGs) have played a crucial role in the development of advanced knowledge-intensive applications, such as recommender systems and semantic search. However, the human sensory system is inherently multi-modal, as objects around us are often represented by a combination of multiple signals, such as visual and textual. Consequently, Multi-modal Knowledge Graphs (MMKGs), which combine structured knowledge representation with multiple modalities, represent a powerful extension of KGs. Although MMKGs can handle certain types of tasks (e.g., visual query answering) or queries that standard KGs cannot process, and they can effectively tackle some standard problems (e.g., entity alignment), we lack a widely accepted definition of MMKG. In this survey, we provide a rigorous definition of MMKGs along with a classification scheme based on how existing approaches address four fundamental challenges: representation, fusion, alignment, and translation, which are crucial to improving an MMKG. Our classification scheme is flexible and allows for easy incorporation of new approaches, as well as a comparison of two approaches in terms of how they address one of the fundamental challenges mentioned above. As the first comprehensive survey of MMKG, this article aims to inspire and provide a reference for relevant researchers in the field of Artificial Intelligence.</p>\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3656579\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3656579","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A Survey of Multi-modal Knowledge Graphs: Technologies and Trends
In recent years, Knowledge Graphs (KGs) have played a crucial role in the development of advanced knowledge-intensive applications, such as recommender systems and semantic search. However, the human sensory system is inherently multi-modal, as objects around us are often represented by a combination of multiple signals, such as visual and textual. Consequently, Multi-modal Knowledge Graphs (MMKGs), which combine structured knowledge representation with multiple modalities, represent a powerful extension of KGs. Although MMKGs can handle certain types of tasks (e.g., visual query answering) or queries that standard KGs cannot process, and they can effectively tackle some standard problems (e.g., entity alignment), we lack a widely accepted definition of MMKG. In this survey, we provide a rigorous definition of MMKGs along with a classification scheme based on how existing approaches address four fundamental challenges: representation, fusion, alignment, and translation, which are crucial to improving an MMKG. Our classification scheme is flexible and allows for easy incorporation of new approaches, as well as a comparison of two approaches in terms of how they address one of the fundamental challenges mentioned above. As the first comprehensive survey of MMKG, this article aims to inspire and provide a reference for relevant researchers in the field of Artificial Intelligence.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.