一个有节制的亚扩散布莱克-斯科尔斯模型

IF 2.5 2区 数学 Q1 MATHEMATICS
Grzegorz Krzyżanowski, Marcin Magdziarz
{"title":"一个有节制的亚扩散布莱克-斯科尔斯模型","authors":"Grzegorz Krzyżanowski, Marcin Magdziarz","doi":"10.1007/s13540-024-00276-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we focus on the tempered subdiffusive Black–Scholes model. The main part of our work consists of the finite difference method as a numerical approach to option pricing in the considered model. We derive the governing fractional differential equation and the related weighted numerical scheme. The proposed method has an accuracy order <span>\\(2-\\alpha \\)</span> with respect to time, where <span>\\(\\alpha \\in (0,1)\\)</span> is the subdiffusion parameter and 2 with respect to space. Furthermore, we provide stability and convergence analysis. Finally, we present some numerical results.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"2012 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A tempered subdiffusive Black–Scholes model\",\"authors\":\"Grzegorz Krzyżanowski, Marcin Magdziarz\",\"doi\":\"10.1007/s13540-024-00276-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we focus on the tempered subdiffusive Black–Scholes model. The main part of our work consists of the finite difference method as a numerical approach to option pricing in the considered model. We derive the governing fractional differential equation and the related weighted numerical scheme. The proposed method has an accuracy order <span>\\\\(2-\\\\alpha \\\\)</span> with respect to time, where <span>\\\\(\\\\alpha \\\\in (0,1)\\\\)</span> is the subdiffusion parameter and 2 with respect to space. Furthermore, we provide stability and convergence analysis. Finally, we present some numerical results.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"2012 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00276-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00276-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将重点研究节制亚扩散布莱克-斯科尔斯(Black-Scholes)模型。我们工作的主要部分包括在所考虑的模型中采用有限差分法作为期权定价的数值方法。我们推导了支配性分数微分方程和相关的加权数值方案。所提出的方法在时间上有一个精度阶(2-\alpha \),其中 \(\alpha \in (0,1)\) 是次扩散参数,在空间上有 2 个精度阶。此外,我们还提供了稳定性和收敛性分析。最后,我们给出了一些数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A tempered subdiffusive Black–Scholes model

A tempered subdiffusive Black–Scholes model

In this paper, we focus on the tempered subdiffusive Black–Scholes model. The main part of our work consists of the finite difference method as a numerical approach to option pricing in the considered model. We derive the governing fractional differential equation and the related weighted numerical scheme. The proposed method has an accuracy order \(2-\alpha \) with respect to time, where \(\alpha \in (0,1)\) is the subdiffusion parameter and 2 with respect to space. Furthermore, we provide stability and convergence analysis. Finally, we present some numerical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信