涉及不同分数拉普拉斯的耦合 k-Hessian 系统的非负解

IF 2.5 2区 数学 Q1 MATHEMATICS
Lihong Zhang, Qi Liu, Bashir Ahmad, Guotao Wang
{"title":"涉及不同分数拉普拉斯的耦合 k-Hessian 系统的非负解","authors":"Lihong Zhang, Qi Liu, Bashir Ahmad, Guotao Wang","doi":"10.1007/s13540-024-00277-1","DOIUrl":null,"url":null,"abstract":"<p>This paper studies the following coupled <i>k</i>-Hessian system with different order fractional Laplacian operators: </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} {S_k}({D^2}w(x))-A(x)(-\\varDelta )^{\\alpha /2}w(x)=f(z(x)),\\\\ {S_k}({D^2}z(x))-B(x)(-\\varDelta )^{\\beta /2}z(x)=g(w(x)). \\end{array}\\right. } \\end{aligned}$$</span><p>Firstly, we discuss <i>decay at infinity principle</i> and <i>narrow region principle</i> for the <i>k</i>-Hessian system involving fractional order Laplacian operators. Then, by exploiting the direct method of moving planes, the radial symmetry and monotonicity of the nonnegative solutions to the coupled <i>k</i>-Hessian system are proved in a unit ball and the whole space, respectively. We believe that the present work will lead to a deep understanding of the coupled <i>k</i>-Hessian system involving different order fractional Laplacian operators.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"1 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonnegative solutions of a coupled k-Hessian system involving different fractional Laplacians\",\"authors\":\"Lihong Zhang, Qi Liu, Bashir Ahmad, Guotao Wang\",\"doi\":\"10.1007/s13540-024-00277-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper studies the following coupled <i>k</i>-Hessian system with different order fractional Laplacian operators: </p><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} {S_k}({D^2}w(x))-A(x)(-\\\\varDelta )^{\\\\alpha /2}w(x)=f(z(x)),\\\\\\\\ {S_k}({D^2}z(x))-B(x)(-\\\\varDelta )^{\\\\beta /2}z(x)=g(w(x)). \\\\end{array}\\\\right. } \\\\end{aligned}$$</span><p>Firstly, we discuss <i>decay at infinity principle</i> and <i>narrow region principle</i> for the <i>k</i>-Hessian system involving fractional order Laplacian operators. Then, by exploiting the direct method of moving planes, the radial symmetry and monotonicity of the nonnegative solutions to the coupled <i>k</i>-Hessian system are proved in a unit ball and the whole space, respectively. We believe that the present work will lead to a deep understanding of the coupled <i>k</i>-Hessian system involving different order fractional Laplacian operators.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00277-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00277-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了以下具有不同阶分数拉普拉斯算子的耦合 k-Hessian 系统:$$\begin{aligned} {\left\{ \begin{array}{ll}{S_k}({D^2}w(x))-A(x)(-\varDelta )^{\alpha/2}w(x)=f(z(x)),\{S_k}({D^2}z(x))-B(x)(-\varDelta )^{\beta/2}z(x)=g(w(x))。\end{array}\right.}\end{aligned}$$首先,我们讨论了涉及分数阶拉普拉斯算子的 k-Hessian 系统的无穷衰减原理和窄区域原理。然后,利用移动平面的直接方法,分别证明了耦合 k-Hessian 系统非负解在单位球和整个空间的径向对称性和单调性。我们相信,本研究将有助于深入理解涉及不同阶分数拉普拉斯算子的耦合 k-Hessian 系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonnegative solutions of a coupled k-Hessian system involving different fractional Laplacians

This paper studies the following coupled k-Hessian system with different order fractional Laplacian operators:

$$\begin{aligned} {\left\{ \begin{array}{ll} {S_k}({D^2}w(x))-A(x)(-\varDelta )^{\alpha /2}w(x)=f(z(x)),\\ {S_k}({D^2}z(x))-B(x)(-\varDelta )^{\beta /2}z(x)=g(w(x)). \end{array}\right. } \end{aligned}$$

Firstly, we discuss decay at infinity principle and narrow region principle for the k-Hessian system involving fractional order Laplacian operators. Then, by exploiting the direct method of moving planes, the radial symmetry and monotonicity of the nonnegative solutions to the coupled k-Hessian system are proved in a unit ball and the whole space, respectively. We believe that the present work will lead to a deep understanding of the coupled k-Hessian system involving different order fractional Laplacian operators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信