{"title":"气缸尾部的柔性片材被迫旋转","authors":"Adrian Carleton, Yahya Modarres-Sadeghi","doi":"10.1016/j.jfluidstructs.2024.104110","DOIUrl":null,"url":null,"abstract":"<div><p>We discuss the behavior of a flexible sheet placed in the wake of a cylinder that is forced to rotate periodically. This is done through a series of experiments conducted in a water tunnel and by simultaneously visualizing the flow behavior and tracking the motion of the flexible sheet in the wake of the cylinder. We show how the response of a flexible sheet in the wake of a fixed cylinder, which is the result of the sheet’s interaction with the vortices that are shed at a frequency predicted by the Strouhal law can be changed to a “desired” response by forcing the upstream cylinder to rotate periodically. Large-amplitude oscillations at a frequency different from the Strouhal frequency can be imposed on the flexible sheet, and the sheet’s oscillations can be suppressed if the cylinder is forced to rotate at a higher frequency. The flexible sheet finds its way in between the vortices that are shed in the wake of the cylinder, and by controlling the frequency and location of the shed vortices in the wake of the cylinder, one can impose a desired motion on the sheet. Besides imposing a symmetric oscillatory response on the sheet, we show that asymmetric responses can be imposed on the sheet when an asymmetric waveform is used to force the upstream cylinder.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":"127 ","pages":"Article 104110"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A flexible sheet in the wake of a cylinder forced to rotate\",\"authors\":\"Adrian Carleton, Yahya Modarres-Sadeghi\",\"doi\":\"10.1016/j.jfluidstructs.2024.104110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We discuss the behavior of a flexible sheet placed in the wake of a cylinder that is forced to rotate periodically. This is done through a series of experiments conducted in a water tunnel and by simultaneously visualizing the flow behavior and tracking the motion of the flexible sheet in the wake of the cylinder. We show how the response of a flexible sheet in the wake of a fixed cylinder, which is the result of the sheet’s interaction with the vortices that are shed at a frequency predicted by the Strouhal law can be changed to a “desired” response by forcing the upstream cylinder to rotate periodically. Large-amplitude oscillations at a frequency different from the Strouhal frequency can be imposed on the flexible sheet, and the sheet’s oscillations can be suppressed if the cylinder is forced to rotate at a higher frequency. The flexible sheet finds its way in between the vortices that are shed in the wake of the cylinder, and by controlling the frequency and location of the shed vortices in the wake of the cylinder, one can impose a desired motion on the sheet. Besides imposing a symmetric oscillatory response on the sheet, we show that asymmetric responses can be imposed on the sheet when an asymmetric waveform is used to force the upstream cylinder.</p></div>\",\"PeriodicalId\":54834,\"journal\":{\"name\":\"Journal of Fluids and Structures\",\"volume\":\"127 \",\"pages\":\"Article 104110\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889974624000458\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624000458","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A flexible sheet in the wake of a cylinder forced to rotate
We discuss the behavior of a flexible sheet placed in the wake of a cylinder that is forced to rotate periodically. This is done through a series of experiments conducted in a water tunnel and by simultaneously visualizing the flow behavior and tracking the motion of the flexible sheet in the wake of the cylinder. We show how the response of a flexible sheet in the wake of a fixed cylinder, which is the result of the sheet’s interaction with the vortices that are shed at a frequency predicted by the Strouhal law can be changed to a “desired” response by forcing the upstream cylinder to rotate periodically. Large-amplitude oscillations at a frequency different from the Strouhal frequency can be imposed on the flexible sheet, and the sheet’s oscillations can be suppressed if the cylinder is forced to rotate at a higher frequency. The flexible sheet finds its way in between the vortices that are shed in the wake of the cylinder, and by controlling the frequency and location of the shed vortices in the wake of the cylinder, one can impose a desired motion on the sheet. Besides imposing a symmetric oscillatory response on the sheet, we show that asymmetric responses can be imposed on the sheet when an asymmetric waveform is used to force the upstream cylinder.
期刊介绍:
The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved.
The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.