精确双查询量子算法的特征

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Shaoliang Ye , Wei Yang , Liusheng Huang
{"title":"精确双查询量子算法的特征","authors":"Shaoliang Ye ,&nbsp;Wei Yang ,&nbsp;Liusheng Huang","doi":"10.1016/j.ic.2024.105166","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum query model is a crucial model for quantum computing, where one query to some input variable of a Boolean function <em>f</em> defined on <span><math><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> returns the variable value. The exact query complexity, denoted as <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>, is defined to be the minimum number of queries required to determine the function value. An important problem in this area is to give a succinct characterization of a <em>k</em>-query exact quantum algorithm for an arbitrary <em>k</em>. To date, the cases <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>k</mi><mo>=</mo><mi>n</mi></math></span> are already solved and the case <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span> remains unknown. Our result is that there are 27 nondegenerate Boolean functions up to isomorphism with <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> being two, among which only two functions can be solved by a 2-query classical algorithm. The input bit number <em>n</em> of the above 27 functions ranges from 2 to 6, where the case <span><math><mi>n</mi><mo>≤</mo><mn>3</mn></math></span> is already proved and the case <span><math><mi>n</mi><mo>=</mo><mn>4</mn></math></span> is already found by numerically solving semidefinite programming, which is a complete characterization of quantum query algorithm. Assuming the correctness of the numerical result for <span><math><mi>n</mi><mo>=</mo><mn>4</mn></math></span>, we prove that there are four functions in the case <span><math><mi>n</mi><mo>=</mo><mn>5</mn></math></span>, one in the case <span><math><mi>n</mi><mo>=</mo><mn>6</mn></math></span> and none in the case <span><math><mi>n</mi><mo>≥</mo><mn>7</mn></math></span>. We further show that the 25 functions for which quantum algorithm has advantage over classical algorithm contain essentially only four different structures.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"298 ","pages":"Article 105166"},"PeriodicalIF":0.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of exact two-query quantum algorithms\",\"authors\":\"Shaoliang Ye ,&nbsp;Wei Yang ,&nbsp;Liusheng Huang\",\"doi\":\"10.1016/j.ic.2024.105166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantum query model is a crucial model for quantum computing, where one query to some input variable of a Boolean function <em>f</em> defined on <span><math><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> returns the variable value. The exact query complexity, denoted as <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>, is defined to be the minimum number of queries required to determine the function value. An important problem in this area is to give a succinct characterization of a <em>k</em>-query exact quantum algorithm for an arbitrary <em>k</em>. To date, the cases <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>k</mi><mo>=</mo><mi>n</mi></math></span> are already solved and the case <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span> remains unknown. Our result is that there are 27 nondegenerate Boolean functions up to isomorphism with <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> being two, among which only two functions can be solved by a 2-query classical algorithm. The input bit number <em>n</em> of the above 27 functions ranges from 2 to 6, where the case <span><math><mi>n</mi><mo>≤</mo><mn>3</mn></math></span> is already proved and the case <span><math><mi>n</mi><mo>=</mo><mn>4</mn></math></span> is already found by numerically solving semidefinite programming, which is a complete characterization of quantum query algorithm. Assuming the correctness of the numerical result for <span><math><mi>n</mi><mo>=</mo><mn>4</mn></math></span>, we prove that there are four functions in the case <span><math><mi>n</mi><mo>=</mo><mn>5</mn></math></span>, one in the case <span><math><mi>n</mi><mo>=</mo><mn>6</mn></math></span> and none in the case <span><math><mi>n</mi><mo>≥</mo><mn>7</mn></math></span>. We further show that the 25 functions for which quantum algorithm has advantage over classical algorithm contain essentially only four different structures.</p></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"298 \",\"pages\":\"Article 105166\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890540124000312\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540124000312","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

量子查询模型是量子计算的一个重要模型,对定义在 {0,1}n 上的布尔函数 f 的某个输入变量进行一次查询,就能返回变量值。精确查询复杂度(表示为 QE(f))被定义为确定函数值所需的最小查询次数。迄今为止,k=1 和 k=n 的情况已经解决,而 k=2 的情况仍然未知。我们的结果是,有 27 个非enerate 布尔函数直到同构,QE(f) 为 2,其中只有两个函数能用 2 查询经典算法求解。上述 27 个函数的输入位数 n 从 2 到 6 不等,其中 n≤3 的情况已被证明,n=4 的情况已通过数值求解半定量编程找到,这是量子查询算法的完整表征。假设 n=4 的数值结果是正确的,我们证明在 n=5 的情况下有四个函数,n=6 的情况下有一个,n≥7 的情况下没有。我们进一步证明,与经典算法相比,量子算法具有优势的 25 个函数基本上只包含四种不同的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of exact two-query quantum algorithms

Quantum query model is a crucial model for quantum computing, where one query to some input variable of a Boolean function f defined on {0,1}n returns the variable value. The exact query complexity, denoted as QE(f), is defined to be the minimum number of queries required to determine the function value. An important problem in this area is to give a succinct characterization of a k-query exact quantum algorithm for an arbitrary k. To date, the cases k=1 and k=n are already solved and the case k=2 remains unknown. Our result is that there are 27 nondegenerate Boolean functions up to isomorphism with QE(f) being two, among which only two functions can be solved by a 2-query classical algorithm. The input bit number n of the above 27 functions ranges from 2 to 6, where the case n3 is already proved and the case n=4 is already found by numerically solving semidefinite programming, which is a complete characterization of quantum query algorithm. Assuming the correctness of the numerical result for n=4, we prove that there are four functions in the case n=5, one in the case n=6 and none in the case n7. We further show that the 25 functions for which quantum algorithm has advantage over classical algorithm contain essentially only four different structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信