检测和缓解车辆排队干扰攻击

IF 5.8 2区 计算机科学 Q1 TELECOMMUNICATIONS
Salah Zemmoudj, Nabila Bermad, Louiza Bouallouche-Medjkoune
{"title":"检测和缓解车辆排队干扰攻击","authors":"Salah Zemmoudj,&nbsp;Nabila Bermad,&nbsp;Louiza Bouallouche-Medjkoune","doi":"10.1016/j.vehcom.2024.100765","DOIUrl":null,"url":null,"abstract":"<div><p>In response to the escalating challenges posed by traffic bottlenecks, accidents, and intersection delays, the deployment of platooning mechanisms emerges as an imperative remedy. This investigation revolves around a pivotal scenario wherein a closely-knit platoon of cooperative vehicles approaches an intersection. Orchestrated by a lead vehicle, this convoy navigates the traffic light to expedite the journey of its followers towards their respective destinations. However, given that the size of the platoon can be increased, it will become difficult for the leader to manage it smoothly. Therefore, dividing the platoon into small groups led by co-leaders who deal directly with the leader is considered an ideal solution to speed up and facilitate the process of maintaining platoon stability. In this paper, we propose a Cooperative Adaptive Platooning Control Algorithm (CAPCA) for the hybrid communication topology in platooning. In fact, CAPCA aims to achieve stability in the platoon by distributing tasks in a parallel manner to mini-platoons. Moreover, inherent complexities arise as select members within the platoon strive to undermine its stability. Within this context, the research addresses the intricacies of Vehicle Platooning Disruption (VPD) attacks, a menacing phenomenon characterized by deliberate efforts to destabilize or seize control of a platoon. These attacks manifest through tactics such as false data injection (FDI) and replaying of control messages. In response, a robust and multifaceted countermeasure is conceptualized. The Vehicle Platooning Disruption Attacks Detection Protocol (VPD-ADP) takes center stage as a foundational component. By identifying instability within the platoon's dynamics model, VPD-ADP lays the essential groundwork for mitigating the repercussions of FDI and replay attacks. Employing advanced stochastic time series analysis, the impact of VPD attacks is scrutinized via anomalies in the Cartesian coordinates of vehicles deviations from the trajectory anticipated by the platoon. Moreover, the study introduces the Reputation-based Reliable Mitigation Protocol (RRMP), a pioneering approach that leverages collaborative data gleaned from neighboring vehicles. RRMP is devised to assess the veracity of received messages and gauge their reliability in real-time. Through extensive simulations and experiments, the proposed approach's effectiveness in fortifying the resilience of vehicle platooning systems against an array of disruption attacks is convincingly demonstrated.</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection and mitigation of vehicle platooning disruption attacks\",\"authors\":\"Salah Zemmoudj,&nbsp;Nabila Bermad,&nbsp;Louiza Bouallouche-Medjkoune\",\"doi\":\"10.1016/j.vehcom.2024.100765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In response to the escalating challenges posed by traffic bottlenecks, accidents, and intersection delays, the deployment of platooning mechanisms emerges as an imperative remedy. This investigation revolves around a pivotal scenario wherein a closely-knit platoon of cooperative vehicles approaches an intersection. Orchestrated by a lead vehicle, this convoy navigates the traffic light to expedite the journey of its followers towards their respective destinations. However, given that the size of the platoon can be increased, it will become difficult for the leader to manage it smoothly. Therefore, dividing the platoon into small groups led by co-leaders who deal directly with the leader is considered an ideal solution to speed up and facilitate the process of maintaining platoon stability. In this paper, we propose a Cooperative Adaptive Platooning Control Algorithm (CAPCA) for the hybrid communication topology in platooning. In fact, CAPCA aims to achieve stability in the platoon by distributing tasks in a parallel manner to mini-platoons. Moreover, inherent complexities arise as select members within the platoon strive to undermine its stability. Within this context, the research addresses the intricacies of Vehicle Platooning Disruption (VPD) attacks, a menacing phenomenon characterized by deliberate efforts to destabilize or seize control of a platoon. These attacks manifest through tactics such as false data injection (FDI) and replaying of control messages. In response, a robust and multifaceted countermeasure is conceptualized. The Vehicle Platooning Disruption Attacks Detection Protocol (VPD-ADP) takes center stage as a foundational component. By identifying instability within the platoon's dynamics model, VPD-ADP lays the essential groundwork for mitigating the repercussions of FDI and replay attacks. Employing advanced stochastic time series analysis, the impact of VPD attacks is scrutinized via anomalies in the Cartesian coordinates of vehicles deviations from the trajectory anticipated by the platoon. Moreover, the study introduces the Reputation-based Reliable Mitigation Protocol (RRMP), a pioneering approach that leverages collaborative data gleaned from neighboring vehicles. RRMP is devised to assess the veracity of received messages and gauge their reliability in real-time. Through extensive simulations and experiments, the proposed approach's effectiveness in fortifying the resilience of vehicle platooning systems against an array of disruption attacks is convincingly demonstrated.</p></div>\",\"PeriodicalId\":54346,\"journal\":{\"name\":\"Vehicular Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vehicular Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214209624000408\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209624000408","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

为应对交通瓶颈、交通事故和交叉路口延误带来的日益严峻的挑战,部署排车机制成为当务之急。这项研究围绕一个关键场景展开,在这个场景中,一个紧密合作的车队驶近一个交叉路口。在领头车辆的协调下,车队通过交通信号灯,加快后续车辆驶向各自目的地的速度。然而,由于车队的规模可以扩大,领队很难顺利地进行管理。因此,把排分成由共同领导者领导的小组,由他们直接与领导者打交道被认为是一个理想的解决方案,可以加快和促进维持排的稳定性。在本文中,我们提出了一种适用于混合通信拓扑的合作自适应排队控制算法(CAPCA)。事实上,CAPCA 的目的是通过将任务以并行的方式分配给迷你排来实现排的稳定性。此外,由于排内部分成员会破坏排的稳定性,因此会产生固有的复杂性。在此背景下,本研究探讨了车辆排序破坏(VPD)攻击的复杂性,这是一种来势汹汹的现象,其特点是蓄意破坏排的稳定或夺取排的控制权。这些攻击通过虚假数据注入(FDI)和控制信息重放等战术表现出来。为此,我们构想了一种强有力的多层面应对措施。车辆排序中断攻击检测协议(VPD-ADP)作为基础组件占据中心位置。VPD-ADP 通过识别排的动态模型中的不稳定性,为减轻 FDI 和重放攻击的影响奠定了重要基础。利用先进的随机时间序列分析,通过车辆笛卡尔坐标偏离排的预期轨迹的异常情况来仔细研究 VPD 攻击的影响。此外,研究还引入了基于信誉的可靠缓解协议(RRMP),这是一种利用从邻近车辆收集的协作数据的开创性方法。RRMP 用于实时评估接收信息的真实性和可靠性。通过大量的模拟和实验,令人信服地证明了所提出的方法在加强车辆排队系统抵御一系列破坏性攻击方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection and mitigation of vehicle platooning disruption attacks

In response to the escalating challenges posed by traffic bottlenecks, accidents, and intersection delays, the deployment of platooning mechanisms emerges as an imperative remedy. This investigation revolves around a pivotal scenario wherein a closely-knit platoon of cooperative vehicles approaches an intersection. Orchestrated by a lead vehicle, this convoy navigates the traffic light to expedite the journey of its followers towards their respective destinations. However, given that the size of the platoon can be increased, it will become difficult for the leader to manage it smoothly. Therefore, dividing the platoon into small groups led by co-leaders who deal directly with the leader is considered an ideal solution to speed up and facilitate the process of maintaining platoon stability. In this paper, we propose a Cooperative Adaptive Platooning Control Algorithm (CAPCA) for the hybrid communication topology in platooning. In fact, CAPCA aims to achieve stability in the platoon by distributing tasks in a parallel manner to mini-platoons. Moreover, inherent complexities arise as select members within the platoon strive to undermine its stability. Within this context, the research addresses the intricacies of Vehicle Platooning Disruption (VPD) attacks, a menacing phenomenon characterized by deliberate efforts to destabilize or seize control of a platoon. These attacks manifest through tactics such as false data injection (FDI) and replaying of control messages. In response, a robust and multifaceted countermeasure is conceptualized. The Vehicle Platooning Disruption Attacks Detection Protocol (VPD-ADP) takes center stage as a foundational component. By identifying instability within the platoon's dynamics model, VPD-ADP lays the essential groundwork for mitigating the repercussions of FDI and replay attacks. Employing advanced stochastic time series analysis, the impact of VPD attacks is scrutinized via anomalies in the Cartesian coordinates of vehicles deviations from the trajectory anticipated by the platoon. Moreover, the study introduces the Reputation-based Reliable Mitigation Protocol (RRMP), a pioneering approach that leverages collaborative data gleaned from neighboring vehicles. RRMP is devised to assess the veracity of received messages and gauge their reliability in real-time. Through extensive simulations and experiments, the proposed approach's effectiveness in fortifying the resilience of vehicle platooning systems against an array of disruption attacks is convincingly demonstrated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vehicular Communications
Vehicular Communications Engineering-Electrical and Electronic Engineering
CiteScore
12.70
自引率
10.40%
发文量
88
审稿时长
62 days
期刊介绍: Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier. The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications: Vehicle to vehicle and vehicle to infrastructure communications Channel modelling, modulating and coding Congestion Control and scalability issues Protocol design, testing and verification Routing in vehicular networks Security issues and countermeasures Deployment and field testing Reducing energy consumption and enhancing safety of vehicles Wireless in–car networks Data collection and dissemination methods Mobility and handover issues Safety and driver assistance applications UAV Underwater communications Autonomous cooperative driving Social networks Internet of vehicles Standardization of protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信