基于分形几何理论的多孔岩石渗透性和孔隙度热演化研究

Fractals Pub Date : 2024-04-09 DOI:10.1142/s0218348x24500518
TONGJUN MIAO, AIMIN CHEN, RICHENG LIU, PENG XU, BOMING YU
{"title":"基于分形几何理论的多孔岩石渗透性和孔隙度热演化研究","authors":"TONGJUN MIAO, AIMIN CHEN, RICHENG LIU, PENG XU, BOMING YU","doi":"10.1142/s0218348x24500518","DOIUrl":null,"url":null,"abstract":"<p>The temperature effect on the permeability of porous rocks continues to be a considerable controversy in the area of reservoirs since the thermal expansion of mineral grains exhibits complicated influence on pore geometries in them. To investigate the degree of effect of pore structures on the hydro-thermal coupling process, a study of the thermal evolution of permeability and porosity of porous rocks is performed based on fractal theory and on thermal as well as stress effects. This work can provide a general physical explanation on some arguments in this area. The proposed models for permeability and porosity can be associated with temperature and the pore-structural parameters as well as physical parameters of porous rocks, such as the initial porosity (<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ϕ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span>, the initial fractal dimension (<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>D</mi></mrow><mrow><mi>f</mi><mo>,</mo><mn>0</mn></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span>, the fractal dimension for tortuosity (<span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>D</mi></mrow><mrow><mi>T</mi><mo>,</mo><mi>T</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> and the thermal expansion coefficient of pore volume (<span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>α</mi></mrow><mrow><mi>T</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span>. The validity of the proposed models for temperature-dependent permeability and temperature-dependent porosity is validated by comparing them with the available experimental results. The investigations are performed in detail considering the essential effects of pore-structural parameters and physical parameters of porous rock on the dimensionless temperature-dependent permeability and temperature-dependent porosity as well as the fractal dimensions for pore areas and tortuosity. It is found that the pore distribution scale range ratio (<span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>λ</mi></mrow><mrow><mo>min</mo><mo>,</mo><mi>T</mi></mrow></msub><mo stretchy=\"false\">/</mo><msub><mrow><mi>λ</mi></mrow><mrow><mo>max</mo><mo>,</mo><mi>T</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span>, and pore thermal expansion coefficient (<span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>α</mi></mrow><mrow><mi>T</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> have significant effects on the dimensionless temperature-dependent permeability and temperature-dependent porosity of porous rock as well as the fractal dimensions for pore areas and tortuosity. The proposed models may provide a fundamental understanding of the coupled hydro-thermal process of rocks.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A STUDY OF THE THERMAL EVOLUTION OF PERMEABILITY AND POROSITY OF POROUS ROCKS BASED ON FRACTAL GEOMETRY THEORY\",\"authors\":\"TONGJUN MIAO, AIMIN CHEN, RICHENG LIU, PENG XU, BOMING YU\",\"doi\":\"10.1142/s0218348x24500518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The temperature effect on the permeability of porous rocks continues to be a considerable controversy in the area of reservoirs since the thermal expansion of mineral grains exhibits complicated influence on pore geometries in them. To investigate the degree of effect of pore structures on the hydro-thermal coupling process, a study of the thermal evolution of permeability and porosity of porous rocks is performed based on fractal theory and on thermal as well as stress effects. This work can provide a general physical explanation on some arguments in this area. The proposed models for permeability and porosity can be associated with temperature and the pore-structural parameters as well as physical parameters of porous rocks, such as the initial porosity (<span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>ϕ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, the initial fractal dimension (<span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>D</mi></mrow><mrow><mi>f</mi><mo>,</mo><mn>0</mn></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, the fractal dimension for tortuosity (<span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>D</mi></mrow><mrow><mi>T</mi><mo>,</mo><mi>T</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> and the thermal expansion coefficient of pore volume (<span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>α</mi></mrow><mrow><mi>T</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. The validity of the proposed models for temperature-dependent permeability and temperature-dependent porosity is validated by comparing them with the available experimental results. The investigations are performed in detail considering the essential effects of pore-structural parameters and physical parameters of porous rock on the dimensionless temperature-dependent permeability and temperature-dependent porosity as well as the fractal dimensions for pore areas and tortuosity. It is found that the pore distribution scale range ratio (<span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>λ</mi></mrow><mrow><mo>min</mo><mo>,</mo><mi>T</mi></mrow></msub><mo stretchy=\\\"false\\\">/</mo><msub><mrow><mi>λ</mi></mrow><mrow><mo>max</mo><mo>,</mo><mi>T</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, and pore thermal expansion coefficient (<span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>α</mi></mrow><mrow><mi>T</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> have significant effects on the dimensionless temperature-dependent permeability and temperature-dependent porosity of porous rock as well as the fractal dimensions for pore areas and tortuosity. The proposed models may provide a fundamental understanding of the coupled hydro-thermal process of rocks.</p>\",\"PeriodicalId\":501262,\"journal\":{\"name\":\"Fractals\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x24500518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于矿物颗粒的热膨胀对多孔岩石中的孔隙几何结构有着复杂的影响,因此温度对多孔岩石渗透性的影响仍然是储层领域的一个颇具争议的问题。为了研究孔隙结构对水热耦合过程的影响程度,基于分形理论和热效应以及应力效应,对多孔岩石渗透率和孔隙度的热演化进行了研究。这项工作可以为该领域的一些论点提供一般性的物理解释。所提出的渗透率和孔隙度模型可与温度、孔隙结构参数以及多孔岩石的物理参数相关联,如初始孔隙度(j0)、初始分形维数(Df,0)、扭转分形维数(DT,T)和孔隙体积热膨胀系数(αT)。通过与现有的实验结果进行比较,验证了所提出的随温度变化的渗透率和随温度变化的孔隙率模型的有效性。研究详细考虑了多孔岩石的孔隙结构参数和物理参数对无量纲温度相关渗透率和温度相关孔隙度的基本影响,以及孔隙面积和曲折度的分形尺寸。研究发现,孔隙分布尺度范围比(λmin,T/λmax,T)和孔隙热膨胀系数(αT)对多孔岩石的无量纲温度相关渗透率和温度相关孔隙度以及孔隙面积和孔隙度的分形尺寸有显著影响。所提出的模型可以从根本上理解岩石的水热耦合过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A STUDY OF THE THERMAL EVOLUTION OF PERMEABILITY AND POROSITY OF POROUS ROCKS BASED ON FRACTAL GEOMETRY THEORY

The temperature effect on the permeability of porous rocks continues to be a considerable controversy in the area of reservoirs since the thermal expansion of mineral grains exhibits complicated influence on pore geometries in them. To investigate the degree of effect of pore structures on the hydro-thermal coupling process, a study of the thermal evolution of permeability and porosity of porous rocks is performed based on fractal theory and on thermal as well as stress effects. This work can provide a general physical explanation on some arguments in this area. The proposed models for permeability and porosity can be associated with temperature and the pore-structural parameters as well as physical parameters of porous rocks, such as the initial porosity (ϕ0), the initial fractal dimension (Df,0), the fractal dimension for tortuosity (DT,T) and the thermal expansion coefficient of pore volume (αT). The validity of the proposed models for temperature-dependent permeability and temperature-dependent porosity is validated by comparing them with the available experimental results. The investigations are performed in detail considering the essential effects of pore-structural parameters and physical parameters of porous rock on the dimensionless temperature-dependent permeability and temperature-dependent porosity as well as the fractal dimensions for pore areas and tortuosity. It is found that the pore distribution scale range ratio (λmin,T/λmax,T), and pore thermal expansion coefficient (αT) have significant effects on the dimensionless temperature-dependent permeability and temperature-dependent porosity of porous rock as well as the fractal dimensions for pore areas and tortuosity. The proposed models may provide a fundamental understanding of the coupled hydro-thermal process of rocks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信