双变量函数混合(κ,s)-里曼-柳维尔差分积分的简化维数

Fractals Pub Date : 2024-04-09 DOI:10.1142/s0218348x24500622
B. Q. WANG, W. XIAO
{"title":"双变量函数混合(κ,s)-里曼-柳维尔差分积分的简化维数","authors":"B. Q. WANG, W. XIAO","doi":"10.1142/s0218348x24500622","DOIUrl":null,"url":null,"abstract":"<p>The research object of this paper is the mixed <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>κ</mi><mo>,</mo><mi>s</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-Riemann–Liouville fractional integral of bivariate functions on rectangular regions, which is a natural generalization of the fractional integral of univariate functions. This paper first indicates that the mixed integral still maintains the validity of the classical properties, such as boundedness, continuity and bounded variation. Furthermore, we investigate fractal dimensions of bivariate functions under the mixed integral, including the Hausdorff dimension and the Box dimension. The main results indicate that fractal dimensions of the graph of the mixed <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>κ</mi><mo>,</mo><mi>s</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-Riemann–Liouville integral of continuous functions with bounded variation are still two. The Box dimension of the mixed integral of two-dimensional continuous functions has also been calculated. Besides, we prove that the upper bound of the Box dimension of bivariate continuous functions under <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>σ</mi><mo>=</mo><mo stretchy=\"false\">(</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> order of the mixed integral is <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mn>3</mn><mo stretchy=\"false\">−</mo><mo>min</mo><mo stretchy=\"false\">{</mo><mfrac><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mi>κ</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mi>κ</mi></mrow></mfrac><mo stretchy=\"false\">}</mo></math></span><span></span> where <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>κ</mi><mo>&gt;</mo><mn>0</mn></math></span><span></span>.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FRACTAL DIMENSIONS FOR THE MIXED (κ,s)-RIEMANN–LIOUVILLE FRACTIONAL INTEGRAL OF BIVARIATE FUNCTIONS\",\"authors\":\"B. Q. WANG, W. XIAO\",\"doi\":\"10.1142/s0218348x24500622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The research object of this paper is the mixed <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>κ</mi><mo>,</mo><mi>s</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>-Riemann–Liouville fractional integral of bivariate functions on rectangular regions, which is a natural generalization of the fractional integral of univariate functions. This paper first indicates that the mixed integral still maintains the validity of the classical properties, such as boundedness, continuity and bounded variation. Furthermore, we investigate fractal dimensions of bivariate functions under the mixed integral, including the Hausdorff dimension and the Box dimension. The main results indicate that fractal dimensions of the graph of the mixed <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>κ</mi><mo>,</mo><mi>s</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>-Riemann–Liouville integral of continuous functions with bounded variation are still two. The Box dimension of the mixed integral of two-dimensional continuous functions has also been calculated. Besides, we prove that the upper bound of the Box dimension of bivariate continuous functions under <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>σ</mi><mo>=</mo><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> order of the mixed integral is <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>3</mn><mo stretchy=\\\"false\\\">−</mo><mo>min</mo><mo stretchy=\\\"false\\\">{</mo><mfrac><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mi>κ</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mi>κ</mi></mrow></mfrac><mo stretchy=\\\"false\\\">}</mo></math></span><span></span> where <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>κ</mi><mo>&gt;</mo><mn>0</mn></math></span><span></span>.</p>\",\"PeriodicalId\":501262,\"journal\":{\"name\":\"Fractals\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x24500622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的研究对象是矩形区域上双变量函数的混合(κ,s)-黎曼-黎乌韦尔分数积分,它是单变量函数分数积分的自然概括。本文首先指出,混合积分仍然保持了有界性、连续性和有界变化等经典性质的有效性。此外,我们还研究了混合积分下二变量函数的分形维数,包括 Hausdorff 维数和 Box 维数。主要结果表明,有界变化的连续函数的混合(κ,s)-黎曼-黎乌韦尔积分图的分形维数仍然是两个。我们还计算了二维连续函数混合积分的盒维。此外,我们证明了混合积分的σ=(σ1,σ2)阶下二维连续函数的盒维上限为 3-min{σ1κ,σ2κ},其中κ>0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FRACTAL DIMENSIONS FOR THE MIXED (κ,s)-RIEMANN–LIOUVILLE FRACTIONAL INTEGRAL OF BIVARIATE FUNCTIONS

The research object of this paper is the mixed (κ,s)-Riemann–Liouville fractional integral of bivariate functions on rectangular regions, which is a natural generalization of the fractional integral of univariate functions. This paper first indicates that the mixed integral still maintains the validity of the classical properties, such as boundedness, continuity and bounded variation. Furthermore, we investigate fractal dimensions of bivariate functions under the mixed integral, including the Hausdorff dimension and the Box dimension. The main results indicate that fractal dimensions of the graph of the mixed (κ,s)-Riemann–Liouville integral of continuous functions with bounded variation are still two. The Box dimension of the mixed integral of two-dimensional continuous functions has also been calculated. Besides, we prove that the upper bound of the Box dimension of bivariate continuous functions under σ=(σ1,σ2) order of the mixed integral is 3min{σ1κ,σ2κ} where κ>0.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信