A. Novo, F. Lobon, H.G. De Marina, S. Romero, F. Barranco
{"title":"移动机器人的神经形态感知与导航:综述","authors":"A. Novo, F. Lobon, H.G. De Marina, S. Romero, F. Barranco","doi":"10.1145/3656469","DOIUrl":null,"url":null,"abstract":"<p>With the fast and unstoppable evolution of robotics and artificial intelligence, effective autonomous navigation in real-world scenarios has become one of the most pressing challenges in the literature. However, demanding requirements, such as real-time operation, energy and computational efficiency, robustness, and reliability, make most current solutions unsuitable for real-world challenges. Thus, researchers are fostered to seek innovative approaches, such as bio-inspired solutions. Indeed, animals have the intrinsic ability to efficiently perceive, understand, and navigate their unstructured surroundings. To do so, they exploit self-motion cues, proprioception, and visual flow in a cognitive process to map their environment and locate themselves within it. Computational neuroscientists aim to answer “how” and “why” such cognitive processes occur in the brain, to design novel neuromorphic sensors and methods that imitate biological processing. This survey aims to comprehensively review the application of brain-inspired strategies to autonomous navigation. Considering neuromorphic perception and asynchronous event processing, energy-efficient and adaptive learning, or the imitation of the working principles of brain areas that play a crucial role in navigation such as the hippocampus or the entorhinal cortex.</p>","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":null,"pages":null},"PeriodicalIF":23.8000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuromorphic Perception and Navigation for Mobile Robots: A Review\",\"authors\":\"A. Novo, F. Lobon, H.G. De Marina, S. Romero, F. Barranco\",\"doi\":\"10.1145/3656469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the fast and unstoppable evolution of robotics and artificial intelligence, effective autonomous navigation in real-world scenarios has become one of the most pressing challenges in the literature. However, demanding requirements, such as real-time operation, energy and computational efficiency, robustness, and reliability, make most current solutions unsuitable for real-world challenges. Thus, researchers are fostered to seek innovative approaches, such as bio-inspired solutions. Indeed, animals have the intrinsic ability to efficiently perceive, understand, and navigate their unstructured surroundings. To do so, they exploit self-motion cues, proprioception, and visual flow in a cognitive process to map their environment and locate themselves within it. Computational neuroscientists aim to answer “how” and “why” such cognitive processes occur in the brain, to design novel neuromorphic sensors and methods that imitate biological processing. This survey aims to comprehensively review the application of brain-inspired strategies to autonomous navigation. Considering neuromorphic perception and asynchronous event processing, energy-efficient and adaptive learning, or the imitation of the working principles of brain areas that play a crucial role in navigation such as the hippocampus or the entorhinal cortex.</p>\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3656469\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3656469","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Neuromorphic Perception and Navigation for Mobile Robots: A Review
With the fast and unstoppable evolution of robotics and artificial intelligence, effective autonomous navigation in real-world scenarios has become one of the most pressing challenges in the literature. However, demanding requirements, such as real-time operation, energy and computational efficiency, robustness, and reliability, make most current solutions unsuitable for real-world challenges. Thus, researchers are fostered to seek innovative approaches, such as bio-inspired solutions. Indeed, animals have the intrinsic ability to efficiently perceive, understand, and navigate their unstructured surroundings. To do so, they exploit self-motion cues, proprioception, and visual flow in a cognitive process to map their environment and locate themselves within it. Computational neuroscientists aim to answer “how” and “why” such cognitive processes occur in the brain, to design novel neuromorphic sensors and methods that imitate biological processing. This survey aims to comprehensively review the application of brain-inspired strategies to autonomous navigation. Considering neuromorphic perception and asynchronous event processing, energy-efficient and adaptive learning, or the imitation of the working principles of brain areas that play a crucial role in navigation such as the hippocampus or the entorhinal cortex.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.