分析各种心理任务对脑电图信号复杂性的影响

Fractals Pub Date : 2024-04-09 DOI:10.1142/s0218348x24500683
NAJMEH PAKNIYAT, ONDREJ KREJCAR, PETRA MARESOVA, JAMALUDDIN ABDULLAH, HAMIDREZA NAMAZI
{"title":"分析各种心理任务对脑电图信号复杂性的影响","authors":"NAJMEH PAKNIYAT, ONDREJ KREJCAR, PETRA MARESOVA, JAMALUDDIN ABDULLAH, HAMIDREZA NAMAZI","doi":"10.1142/s0218348x24500683","DOIUrl":null,"url":null,"abstract":"<p>Analysis of the brain activity in different mental tasks is an important area of research. We used complexity-based analysis to study the changes in brain activity in four mental tasks: relaxation, Stroop color-word, mirror image recognition, and arithmetic tasks. We used fractal theory, sample entropy, and approximate entropy to analyze the changes in electroencephalogram (EEG) signals between different tasks. Our analysis showed that by moving from relaxation to the Stroop color-word, arithmetic, and mirror image recognition tasks, the complexity of EEG signals increases, respectively, reflecting rising brain activity between these conditions. Furthermore, only the fractal theory could decode the significant changes in brain activity between different conditions. Similar analyses can be done to decode the brain activity in case of other conditions.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANALYSIS OF THE EFFECT OF VARIOUS MENTAL TASKS ON THE EEG SIGNALS’ COMPLEXITY\",\"authors\":\"NAJMEH PAKNIYAT, ONDREJ KREJCAR, PETRA MARESOVA, JAMALUDDIN ABDULLAH, HAMIDREZA NAMAZI\",\"doi\":\"10.1142/s0218348x24500683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Analysis of the brain activity in different mental tasks is an important area of research. We used complexity-based analysis to study the changes in brain activity in four mental tasks: relaxation, Stroop color-word, mirror image recognition, and arithmetic tasks. We used fractal theory, sample entropy, and approximate entropy to analyze the changes in electroencephalogram (EEG) signals between different tasks. Our analysis showed that by moving from relaxation to the Stroop color-word, arithmetic, and mirror image recognition tasks, the complexity of EEG signals increases, respectively, reflecting rising brain activity between these conditions. Furthermore, only the fractal theory could decode the significant changes in brain activity between different conditions. Similar analyses can be done to decode the brain activity in case of other conditions.</p>\",\"PeriodicalId\":501262,\"journal\":{\"name\":\"Fractals\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x24500683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分析不同心理任务中的大脑活动是一个重要的研究领域。我们使用基于复杂性的分析方法研究了四种心理任务中大脑活动的变化:放松、斯特罗普颜色词、镜像识别和算术任务。我们使用了分形理论、样本熵和近似熵来分析不同任务之间脑电图(EEG)信号的变化。我们的分析表明,从放松状态转到斯特罗普颜色词、算术和镜像识别任务时,脑电信号的复杂性分别增加,反映出这些条件之间大脑活动的上升。此外,只有分形理论才能解读不同条件下大脑活动的显著变化。类似的分析还可用于解码其他条件下的大脑活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANALYSIS OF THE EFFECT OF VARIOUS MENTAL TASKS ON THE EEG SIGNALS’ COMPLEXITY

Analysis of the brain activity in different mental tasks is an important area of research. We used complexity-based analysis to study the changes in brain activity in four mental tasks: relaxation, Stroop color-word, mirror image recognition, and arithmetic tasks. We used fractal theory, sample entropy, and approximate entropy to analyze the changes in electroencephalogram (EEG) signals between different tasks. Our analysis showed that by moving from relaxation to the Stroop color-word, arithmetic, and mirror image recognition tasks, the complexity of EEG signals increases, respectively, reflecting rising brain activity between these conditions. Furthermore, only the fractal theory could decode the significant changes in brain activity between different conditions. Similar analyses can be done to decode the brain activity in case of other conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信