Yue Gao;Kun Qiu;Zhe Chen;Wenjun Zhu;Qi Zhang;Handong Luo;Quanwei Lin;Ziheng Yang;Wenhao Liu
{"title":"普罗提诺卫星互联网数字孪生系统","authors":"Yue Gao;Kun Qiu;Zhe Chen;Wenjun Zhu;Qi Zhang;Handong Luo;Quanwei Lin;Ziheng Yang;Wenhao Liu","doi":"10.23919/JCIN.2024.10494942","DOIUrl":null,"url":null,"abstract":"The development of space-air-ground integrated networks (SAGIN) requires sophisticated satellite Internet emulation tools that can handle complex, dynamic topologies and offer in-depth analysis. Existing emulation platforms struggle with challenges like the need for detailed implementation across all network layers, real-time response, and scalability. This paper proposes a digital twin system based on microservices for satellite Internet emulation, namely Plotinus, which aims to solve these problems. Plotinus features a modular design, allowing for easy replacement of the physical layer to emulate different aerial vehicles and analyze channel interference. It also enables replacing of path computation methods to simplify testing and deploying algorithms. In particular, Plotinus allows for real-time emulation with live network traffic, enhancing practical network models. The evaluation result shows Plotinus's effective emulation of dynamic satellite networks with real-world devices. Its adaptability for various communication models and algorithm testing highlights Plotinus's role as a vital tool for developing and analyzing SAGIN systems, offering a cross-layer, real-time, and scalable digital twin system.","PeriodicalId":100766,"journal":{"name":"Journal of Communications and Information Networks","volume":"9 1","pages":"24-33"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plotinus: A Satellite Internet Digital Twin System\",\"authors\":\"Yue Gao;Kun Qiu;Zhe Chen;Wenjun Zhu;Qi Zhang;Handong Luo;Quanwei Lin;Ziheng Yang;Wenhao Liu\",\"doi\":\"10.23919/JCIN.2024.10494942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of space-air-ground integrated networks (SAGIN) requires sophisticated satellite Internet emulation tools that can handle complex, dynamic topologies and offer in-depth analysis. Existing emulation platforms struggle with challenges like the need for detailed implementation across all network layers, real-time response, and scalability. This paper proposes a digital twin system based on microservices for satellite Internet emulation, namely Plotinus, which aims to solve these problems. Plotinus features a modular design, allowing for easy replacement of the physical layer to emulate different aerial vehicles and analyze channel interference. It also enables replacing of path computation methods to simplify testing and deploying algorithms. In particular, Plotinus allows for real-time emulation with live network traffic, enhancing practical network models. The evaluation result shows Plotinus's effective emulation of dynamic satellite networks with real-world devices. Its adaptability for various communication models and algorithm testing highlights Plotinus's role as a vital tool for developing and analyzing SAGIN systems, offering a cross-layer, real-time, and scalable digital twin system.\",\"PeriodicalId\":100766,\"journal\":{\"name\":\"Journal of Communications and Information Networks\",\"volume\":\"9 1\",\"pages\":\"24-33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Communications and Information Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10494942/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10494942/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Plotinus: A Satellite Internet Digital Twin System
The development of space-air-ground integrated networks (SAGIN) requires sophisticated satellite Internet emulation tools that can handle complex, dynamic topologies and offer in-depth analysis. Existing emulation platforms struggle with challenges like the need for detailed implementation across all network layers, real-time response, and scalability. This paper proposes a digital twin system based on microservices for satellite Internet emulation, namely Plotinus, which aims to solve these problems. Plotinus features a modular design, allowing for easy replacement of the physical layer to emulate different aerial vehicles and analyze channel interference. It also enables replacing of path computation methods to simplify testing and deploying algorithms. In particular, Plotinus allows for real-time emulation with live network traffic, enhancing practical network models. The evaluation result shows Plotinus's effective emulation of dynamic satellite networks with real-world devices. Its adaptability for various communication models and algorithm testing highlights Plotinus's role as a vital tool for developing and analyzing SAGIN systems, offering a cross-layer, real-time, and scalable digital twin system.