面向任务的生成式人工智能设计框架

Lara Sucupira Furtado , Jorge Barbosa Soares , Vasco Furtado
{"title":"面向任务的生成式人工智能设计框架","authors":"Lara Sucupira Furtado ,&nbsp;Jorge Barbosa Soares ,&nbsp;Vasco Furtado","doi":"10.1016/j.yjoc.2024.100086","DOIUrl":null,"url":null,"abstract":"<div><p>The intersection of Artificial Intelligence and Design disciplines such as Architecture, Urban Planning, Engineering and Product Design has been a longstanding pursuit, with Generative AI (GAI) ushering in a new era of possibilities. The research presented here explores how GAI can enhance creativity and assist Design practitioners with tasks to create products such as, but not limited to, renderings, concepts, construction techniques, materials, data analytics or maps. We apply a framework of combinational, exploratory and transformational creativity to organize how recent advancements in GAI can support each creative category. We propose a conceptual framework of GAI towards transformational creativity, and identify real-world examples to demonstrate GAI's impact, such as transforming sketches into detailed renders, facilitating real-time 3D model generation, predicting trends through analytics and creating images or reports via text prompts. Our work envisions a future where GAI becomes a real-time collaborator to complete certain automated tasks while liberating Designers to focus on transformational innovation.</p></div>","PeriodicalId":100769,"journal":{"name":"Journal of Creativity","volume":"34 2","pages":"Article 100086"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2713374524000128/pdfft?md5=2b432021669fb50edba4410948fef18a&pid=1-s2.0-S2713374524000128-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A task-oriented framework for generative AI in design\",\"authors\":\"Lara Sucupira Furtado ,&nbsp;Jorge Barbosa Soares ,&nbsp;Vasco Furtado\",\"doi\":\"10.1016/j.yjoc.2024.100086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The intersection of Artificial Intelligence and Design disciplines such as Architecture, Urban Planning, Engineering and Product Design has been a longstanding pursuit, with Generative AI (GAI) ushering in a new era of possibilities. The research presented here explores how GAI can enhance creativity and assist Design practitioners with tasks to create products such as, but not limited to, renderings, concepts, construction techniques, materials, data analytics or maps. We apply a framework of combinational, exploratory and transformational creativity to organize how recent advancements in GAI can support each creative category. We propose a conceptual framework of GAI towards transformational creativity, and identify real-world examples to demonstrate GAI's impact, such as transforming sketches into detailed renders, facilitating real-time 3D model generation, predicting trends through analytics and creating images or reports via text prompts. Our work envisions a future where GAI becomes a real-time collaborator to complete certain automated tasks while liberating Designers to focus on transformational innovation.</p></div>\",\"PeriodicalId\":100769,\"journal\":{\"name\":\"Journal of Creativity\",\"volume\":\"34 2\",\"pages\":\"Article 100086\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2713374524000128/pdfft?md5=2b432021669fb50edba4410948fef18a&pid=1-s2.0-S2713374524000128-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Creativity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2713374524000128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Creativity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2713374524000128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能与建筑、城市规划、工程和产品设计等设计学科的交叉一直是人们长期以来的追求,而生成式人工智能(GAI)则开创了一个充满可能性的新时代。本文介绍的研究探讨了 GAI 如何提高创造力,协助设计从业人员完成创造产品的任务,例如但不限于效果图、概念、建筑技术、材料、数据分析或地图。我们运用组合创造力、探索创造力和变革创造力框架来组织 GAI 的最新进展如何支持每个创造力类别。我们提出了一个面向变革性创造力的 GAI 概念框架,并找出了现实世界中的实例来证明 GAI 的影响,例如将草图转化为详细的渲染图、促进实时三维模型生成、通过分析预测趋势以及通过文本提示创建图像或报告。我们的工作设想了这样一个未来:GAI 成为完成某些自动化任务的实时协作者,同时解放设计师,让他们专注于变革性创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A task-oriented framework for generative AI in design

The intersection of Artificial Intelligence and Design disciplines such as Architecture, Urban Planning, Engineering and Product Design has been a longstanding pursuit, with Generative AI (GAI) ushering in a new era of possibilities. The research presented here explores how GAI can enhance creativity and assist Design practitioners with tasks to create products such as, but not limited to, renderings, concepts, construction techniques, materials, data analytics or maps. We apply a framework of combinational, exploratory and transformational creativity to organize how recent advancements in GAI can support each creative category. We propose a conceptual framework of GAI towards transformational creativity, and identify real-world examples to demonstrate GAI's impact, such as transforming sketches into detailed renders, facilitating real-time 3D model generation, predicting trends through analytics and creating images or reports via text prompts. Our work envisions a future where GAI becomes a real-time collaborator to complete certain automated tasks while liberating Designers to focus on transformational innovation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信