BiT5:用于代码库高级漏洞检测的双向 NLP 方法

Prabith GS , Rohit Narayanan M , Arya A , Aneesh Nadh R , Binu PK
{"title":"BiT5:用于代码库高级漏洞检测的双向 NLP 方法","authors":"Prabith GS ,&nbsp;Rohit Narayanan M ,&nbsp;Arya A ,&nbsp;Aneesh Nadh R ,&nbsp;Binu PK","doi":"10.1016/j.procs.2024.03.270","DOIUrl":null,"url":null,"abstract":"<div><p>In this research paper, a detailed investigation presents the utilization of the BiT5 Bidirectional NLP model for detecting vulnerabilities within codebases. The study addresses the pressing need for techniques enhancing software security by effectively identifying vulnerabilities. Methodologically, the paper introduces BiT5, specifically designed for code analysis and vulnerability detection, encompassing dataset collection, preprocessing steps, and model fine-tuning.</p><p>The key findings underscore BiT5’s efficacy in pinpointing vulnerabilities within code snippets, notably reducing both false positives and false negatives. This research contributes by offering a methodology for leveraging BiT5 in vulnerability detection, thus significantly bolstering software security and mitigating risks associated with code vulnerabilities.</p></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"233 ","pages":"Pages 812-821"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877050924006306/pdf?md5=0ab754addab1b8b10989377ccb28b2ff&pid=1-s2.0-S1877050924006306-main.pdf","citationCount":"0","resultStr":"{\"title\":\"BiT5: A Bidirectional NLP Approach for Advanced Vulnerability Detection in Codebase\",\"authors\":\"Prabith GS ,&nbsp;Rohit Narayanan M ,&nbsp;Arya A ,&nbsp;Aneesh Nadh R ,&nbsp;Binu PK\",\"doi\":\"10.1016/j.procs.2024.03.270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this research paper, a detailed investigation presents the utilization of the BiT5 Bidirectional NLP model for detecting vulnerabilities within codebases. The study addresses the pressing need for techniques enhancing software security by effectively identifying vulnerabilities. Methodologically, the paper introduces BiT5, specifically designed for code analysis and vulnerability detection, encompassing dataset collection, preprocessing steps, and model fine-tuning.</p><p>The key findings underscore BiT5’s efficacy in pinpointing vulnerabilities within code snippets, notably reducing both false positives and false negatives. This research contributes by offering a methodology for leveraging BiT5 in vulnerability detection, thus significantly bolstering software security and mitigating risks associated with code vulnerabilities.</p></div>\",\"PeriodicalId\":20465,\"journal\":{\"name\":\"Procedia Computer Science\",\"volume\":\"233 \",\"pages\":\"Pages 812-821\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1877050924006306/pdf?md5=0ab754addab1b8b10989377ccb28b2ff&pid=1-s2.0-S1877050924006306-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877050924006306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050924006306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究论文中,详细调查介绍了如何利用 BiT5 双向 NLP 模型检测代码库中的漏洞。这项研究通过有效识别漏洞,满足了对提高软件安全性技术的迫切需求。在方法上,论文介绍了专为代码分析和漏洞检测而设计的 BiT5,包括数据集收集、预处理步骤和模型微调。主要发现强调了 BiT5 在精确定位代码片段中的漏洞方面的功效,显著减少了误报和漏报。这项研究提供了一种利用 BiT5 进行漏洞检测的方法,从而极大地增强了软件安全性,降低了与代码漏洞相关的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BiT5: A Bidirectional NLP Approach for Advanced Vulnerability Detection in Codebase

In this research paper, a detailed investigation presents the utilization of the BiT5 Bidirectional NLP model for detecting vulnerabilities within codebases. The study addresses the pressing need for techniques enhancing software security by effectively identifying vulnerabilities. Methodologically, the paper introduces BiT5, specifically designed for code analysis and vulnerability detection, encompassing dataset collection, preprocessing steps, and model fine-tuning.

The key findings underscore BiT5’s efficacy in pinpointing vulnerabilities within code snippets, notably reducing both false positives and false negatives. This research contributes by offering a methodology for leveraging BiT5 in vulnerability detection, thus significantly bolstering software security and mitigating risks associated with code vulnerabilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信